CHEMICAL ENGINEERING PRINCIPLES

For First Year Chemical Engineering Students

By
Assist. Prof. Dr. Anees A. Khadom

Ph.D & Ms.C Chemical Engineering
Contents

Chapter One
INTRODUCTION

1.1 Dimensions, Units, and Their Conversion.
1.2 Moles, Density, and Concentration.
1.3 Choosing a Basis.
1.4 Temperature.
1.5 Pressure.

Chapter Two
MATERIAL BALANCES

2.1 Introduction to Material Balance.
2.2 General Strategy for Solving Material Balance Problems.
2.3 Solving Material Balance Problems for Single Units without Reaction.
2.4 The Chemical Equation and Stoichiometry.
2.5 Material Balances for Processes Involving Reaction.
2.6 Material Balance Problems Involving Multiple Units.
2.7 Recycle, Bypass, and Purge and the Industrial Application of Material Balances.

Chapter Three
GASES, VAPORS, LIQUIDS AND SOLIDS

3.1 Ideal Gases
3.2 The Ideal Gas Law
3.3 Ideal Gas Mixtures and Partial Pressure
3.4 Material Balances Involving Ideal Gases

Reference books
Chapter 1
Dimensions, Units, and Their Conversion

1.1 Units and Dimensions

Dimensions are our basic concepts of measurement such as length, time, mass, temperature, and so on; units are the means of expressing the dimensions, such as feet or centimeters for length, and hours or seconds for time.

In this lectures you will use the two most commonly used systems of units:

1. **SI**, formally called Le Systeme Internationale d’Unites, and informally called SI or more often (redundantly) the SI system of units.
2. **AE**, or American Engineering system of units.

Dimensions and their respective units are classified as fundamental or derived:

- **Fundamental** (or basic) dimensions/units are those that can be measured independently and are sufficient to describe essential physical quantities.

- **Derived** dimensions/units are those that can be developed in terms of the fundamental dimensions/units.

Tables 1.1 and 1.2 list both basic, derived, and alternative units in the SI and AE systems. Figure 1.1 illustrates the relation between the basic dimensions and some of the derived dimensions.

One of the best features of the SI system is that (except for time) units and their multiples and submultiples are related by standard factors designated by the **prefix** indicated in Table 1.3.

Table 1.1 SI Units

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Name of Unit</th>
<th>Symbol for Unit</th>
<th>Definition of Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic SI Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>metre, meter</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>kilogramme, kilogram</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>kelvin</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Molar amount</td>
<td>mole</td>
<td>mol</td>
<td></td>
</tr>
<tr>
<td>Derived SI Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>joule</td>
<td>J</td>
<td>kg · m² · s⁻² → Pa · m³</td>
</tr>
<tr>
<td>Force</td>
<td>newton</td>
<td>N</td>
<td>kg · m · s⁻² → J · m⁻¹</td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>W</td>
<td>kg · m² · s⁻³ → J · s⁻¹</td>
</tr>
<tr>
<td>Density</td>
<td>kilogram per cubic meter</td>
<td>kg · m⁻³</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>meter per second</td>
<td>m · s⁻¹</td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td>meter per second squared</td>
<td>m · s⁻²</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>newton per square meter, pascal</td>
<td>N · m⁻², Pa</td>
<td></td>
</tr>
<tr>
<td>Heat capacity</td>
<td>joule per (kilogram · kelvin)</td>
<td>J · kg⁻¹ · K⁻¹</td>
<td></td>
</tr>
<tr>
<td>Alternative Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>minute, hour, day, year</td>
<td>min, h, d, y</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>degree Celsius</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>litre, liter (dm³)</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>tonne, ton (Mg), gram</td>
<td>t, g</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.2 American Engineering (AE) System Units

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Name of Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Basic Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>foot</td>
<td>ft</td>
</tr>
<tr>
<td>Mass</td>
<td>pound (mass)</td>
<td>lb(_m)</td>
</tr>
<tr>
<td>Time</td>
<td>second, minute, hour, day</td>
<td>s, min, h (hr), day</td>
</tr>
<tr>
<td>Temperature</td>
<td>degree Rankine or degree Fahrenheit</td>
<td>°R or °F</td>
</tr>
<tr>
<td>Molar amount</td>
<td>pound mole</td>
<td>lb mol</td>
</tr>
<tr>
<td>Derived Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td>pound (force)</td>
<td>lb(_f)</td>
</tr>
<tr>
<td>Energy</td>
<td>British thermal unit, foot pound (force)</td>
<td>Btu, (ft)(lb(_f))</td>
</tr>
<tr>
<td>Power</td>
<td>horsepower</td>
<td>hp</td>
</tr>
<tr>
<td>Density</td>
<td>pound (mass) per cubic foot</td>
<td>lb(_m)/ft(^3)</td>
</tr>
<tr>
<td>Velocity</td>
<td>feet per second</td>
<td>ft/s</td>
</tr>
<tr>
<td>Acceleration</td>
<td>feet per second squared</td>
<td>ft/s(^2)</td>
</tr>
<tr>
<td>Pressure</td>
<td>pound (force) per square inch</td>
<td>lb(_f)/in.(^2), psi</td>
</tr>
<tr>
<td>Heat capacity</td>
<td>Btu per pound (mass) per degree F</td>
<td>Btu/(lb(_m))/(°F)</td>
</tr>
</tbody>
</table>

Figure 1.1 Relation between the basic dimensions (in boxes) and various derived dimensions (in ellipses).
Table 1.3 SI Prefixes

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
<td>10^{-1}</td>
<td>deci</td>
<td>d</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^2</td>
<td>hecto</td>
<td>h</td>
<td>10^{-6}</td>
<td>micro</td>
<td>μ</td>
</tr>
<tr>
<td>10^1</td>
<td>deka</td>
<td>da</td>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
</tbody>
</table>

Operations with Units

The rules for handling units are essentially quite simple:

Addition, Subtraction, Equality

You can add, subtract, or equate numerical quantities only if the associated units of the quantities are the same. Thus, the operation

$$5 \text{ kilograms} + 3 \text{ joules}$$

Cannot be carried out because the units as well as the dimensions of the two terms are different. The numerical operation

$$10 \text{ pounds} + 5 \text{ grams}$$

can be performed (because the dimensions are the same, mass) only after the units are transformed to be the same, either pounds, grams, or ounces, or some other mass unit.

Multiplication and Division

You can multiply or divide unlike units at will such as

$$50 \text{(kg)(m)}/\text{(s)}$$

but you cannot cancel or merge units unless they are identical. Thus, $3 \text{ m}^2/60 \text{ cm}$ can be converted to $3 \text{ m}^2/0.6 \text{ m}$, and then to 5 m, but in m/s^2, the units cannot be cancelled or combined.

Example 1

Add the following:

(a) $1 \text{ foot} + 3 \text{ seconds}$

(b) $1 \text{ horsepower} + 300 \text{ watts}$

Solution

The operation indicated by

$$1 \text{ ft} + 3 \text{ s}$$

has no meaning since the dimensions of the two terms are not the same. In the case of

$$1 \text{ hp} + 300 \text{ watts}$$

the dimensions are the same (energy per unit time), but the units are different. You must transform the two quantities into like units, such as horsepower or watts, before the addition can be carried out. Since $1 \text{ hp} = 746 \text{ watts}$,

$$746 \text{ watts} + 300 \text{ watts} = 1046 \text{ watts}$$

1.1.1 Conversion of Units and Conversion Factors

The procedure for converting one set of units to another is simply to multiply any number and its associated units by ratios termed conversion factors to arrive at the desired answer and its associated units.
If a plane travels at twice the speed of sound (assume that the speed of sound is 1100 ft/s), how fast is it going in miles per hour?

We formulate the conversion as follows

\[
\frac{2 \times 1100 \text{ ft}}{s} \times \frac{1 \text{ mi}}{5280 \text{ ft}} \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hr}} = \text{ mph}
\]

Example 2

(a) Convert 2 km to miles.
(b) Convert 400 in.\(^3\)/day to cm\(^3\)/min.

Solution

(a) One way to carry out the conversion is to look up a direct conversion factor, namely 1.61 km = 1 mile:

\[
\frac{2 \text{ km}}{1.61 \text{ km}} = 1.24 \text{ mile}
\]

Another way is to use conversion factors you know

\[
\frac{2 \text{ km}}{1 \text{ km}} \times \frac{10^5 \text{ cm}}{1 \text{ km}} \times \frac{1 \text{ in.}}{2.54 \text{ cm}} \times \frac{1 \text{ ft}}{12 \text{ in.}} \times \frac{1 \text{ mile}}{5280 \text{ ft.}} = 1.24 \text{ mile}
\]

(b)
\[
\frac{400 \text{ in.}^3}{\text{day}} \times \left(\frac{2.54 \text{ cm}}{1 \text{ in.}}\right)^3 \times \frac{1 \text{ day}}{24 \text{ hr}} \times \frac{1 \text{ hr}}{60 \text{ min}} = 4.55 \text{ cm}^3/\text{min}
\]

In part (b) note that not only are the numbers in the conversion of inches to centimeters raised to a power, but the units also are raised to the same power.

Example 3

An example of a semiconductor is ZnS with a particle diameter of 1.8 nanometers. Convert this value to (a) dm (decimeters) and (b) inches.

Solution

(a)
\[
\frac{1.8 \text{ nm}}{1 \text{ nm}} \times \frac{10^{-9} \text{ m}}{1 \text{ nm}} \times \frac{10 \text{ dm}}{1 \text{ m}} = 1.8 \times 10^{-8} \text{ dm}
\]

(b)
\[
\frac{1.8 \text{ nm}}{1 \text{ nm}} \times \frac{10^{-9} \text{ m}}{1 \text{ nm}} \times \frac{39.37 \text{ in.}}{1 \text{ m}} = 7.09 \times 10^{-8} \text{ in.}
\]

In the AE system the conversion of terms involving pound mass and pound force deserve special attention. Let us start the discussion with Newton’s Law:

\[
F = Cma
\]

(1.1)

Where:

F = force
C = a constant whose numerical value and units depend on those selected for F, m, and a
\(m \) = mass
\(a \) = acceleration
In the SI system in which the unit of force is defined to be the Newton (N) when 1 kg is accelerated at 1 m/s², a conversion factor \(C = 1 \text{ N/(Kg)(m)/s}^2 \) must be introduced to have the force be 1 N:

\[
F = \frac{1 \text{ N}}{(\text{kg})(\text{m})} \times \frac{1 \text{ kg}}{\text{m}} \times \frac{1 \text{ m}}{\text{s}^2} = 1 \text{ N}
\] (1.1)

Because the numerical value associated with the conversion factor is 1, the conversion factor seems simple, even nonexistent, and the units are ordinarily ignored.

In the AE system an analogous conversion factor is required. If a mass of 1 lbm is hypothetically accelerated at \(g \) ft/s², where \(g \) is the acceleration that would be caused by gravity (about 32.2 ft/s² depending on the location of the mass), we can make the force be 1 lb by choosing the proper numerical value and units for the conversion factor \(C \):

\[
F = \left(\frac{1 \text{ (lb)}(\text{s}^2)}{32.174 \text{ (lbm)}(\text{ft})} \right) \times \left(\frac{1 \text{ lbm}}{\text{m}} \times \frac{g \text{ ft}}{\text{s}^2} \right) = 1 \text{ lbf}
\] (1.2)

The inverse of the conversion factor with the numerical value 32.174 included is given the special symbol \(g_e \)

\[
g_e = 32.174 \frac{(\text{ft})(\text{lbm})}{(\text{s}^2)(\text{lbf})}
\]

But never forget that the pound (mass) and pound (force) are not the same units in the AE system.

Example 4

What is the potential energy in (ft)(1bf) of a 100 lb drum hanging 10 ft above the surface of the earth with reference to the surface of the earth?

Solution

Potential energy \(P = m \cdot g \cdot h \)

Assume that the 100 lb means 100 lb mass; \(g = \) acceleration of gravity = 32.2 ft/s². Figure E1.4 is a sketch of the system.

![Figure E1.4](https://via.placeholder.com/150)

\[
P = \frac{100 \text{ lbm}}{\text{s}^2} \times 32.2 \text{ ft} \times 10 \text{ ft} \times \frac{(\text{s}^2)(\text{lbf})}{32.174 \text{ (ft)}(\text{lbm})} = 1000 \text{ (ft)(lbf)}
\]
Notice that in the ratio of \(32.2 \text{ ft}/\text{s}^2\) divided by \(32.174 \left[\frac{\text{ft}(\text{lb})}{\text{s}^2(\text{lb})}\right]\), the numerical values are almost equal. Many engineers would solve the problem by saying that \(100 \text{ lb} \times 10 \text{ ft} = 1000 (\text{ft})(\text{lb})\) without realizing that, in effect, they are canceling out the numbers in the \(\text{g}/\text{g}_{\text{c}}\) ratio, and that the lb in the solution means lb.

Example 5

In biological systems, production rate of glucose is \(0.6 \mu \text{g mol}/(\text{mL})(\text{min})\). Determine the production rate of glucose for this system in the units of \(\text{lb mol}/(\text{ft}^3)(\text{day})\).

Solution

Basis: 1 min

\[
\begin{align*}
\frac{0.6 \mu \text{g mol}}{\text{(mL)}(\text{min})} & \quad \frac{1 \text{ g mol}}{10^6 \mu \text{g mol}} & \quad \frac{1 \text{ lb mol}}{454 \text{ g mol}} & \quad \frac{1000 \text{ mL}}{1 \text{ L}} & \quad \frac{1 \text{ L}}{3.531 \times 10^{-2} \text{ ft}^3} & \quad \frac{60 \text{ min}}{1 \text{ hr}} & \quad \frac{24 \text{ hr}}{1 \text{ day}} \\
\end{align*}
\]

\[
= 0.0539 \frac{\text{lb mol}}{(\text{ft}^3)(\text{day})}
\]

1.4 Dimensional Consistency (Homogeneity)

The concept of dimensional consistency can be illustrated by an equation that represents the pressure/volume/temperature behavior of a gas, and is known as van der Waals’s equation.

\[
\left(p + \frac{a}{V^2} \right)(V - b) = RT
\]

Inspection of the equation shows that the constant \(a\) must have the units of \([\text{(pressure)}(\text{volume})^2]\) for the expression in the first set of parentheses to be consistent throughout. If the units of pressure are atm and those of volume are cm\(^3\), \(a\) will have the units of \([\text{(atm)}(\text{cm})^6]\). Similarly, \(b\) must have the same units as \(V\), or in this particular case the units of cm\(^3\).

Example 6

Your handbook shows that microchip etching roughly follows the relation

\[
d = 16.2 - 16.2e^{-0.021t} \quad t < 200
\]

where \(d\) is the depth of the etch in microns (micrometers, \(\mu\text{m}\)) and \(t\) is the time of the etch in seconds. What are the units associated with the numbers 16.2 and 0.021? Convert the relation so that \(d\) becomes expressed in inches and \(t\) can be used in minutes.

Solution

Both values of 16.2 must have the associated units of microns (\(\mu\text{m}\)). The exponential must be dimensionless so that 0.021 must have the associated units of \(\text{s}^{-1}\).

\[
d_{\text{in}} = 16.2 \mu\text{m} \left[\frac{1 \text{ m}}{10^6 \mu\text{m}} \right] \left[\frac{39.27 \text{ in.}}{1 \text{ m}} \right] \left[1 - \exp \left(-\frac{0.021}{s} \right) \right] \left[\frac{60 \text{s}}{1 \text{ min}} \right] \left[\frac{1 \text{ min}}{t_{\text{min}}} \right] \\
= 6.38 \times 10^{-4}(1 - e^{-1.26t_{\text{min}}}) \text{ inches}
\]
Non dimensional Groups:
As you proceed with the study of chemical engineering, you will find that groups of symbols may be put together, either by theory or based on experiment, that have no net units. Such collections of variables or parameters are called dimensionless or nondimensional groups. One example is the Reynolds number (group) arising in fluid mechanics.

$$\text{Reynolds number} = \frac{D\nu\rho}{\mu} = N_{RE}$$

where D is the pipe diameter, say in cm; ν is the fluid velocity, say in cm/s; ρ is the fluid density, say in g/cm3; and μ is the viscosity, say in centipoise, units that can be converted to g/(cm)(s). Introducing the consistent set of units for D, ν, ρ, and μ into $D\nu\rho/\mu$, you will find that all the units cancel out so that the numerical value of 1 is the result of the cancellation of the units.

Example 7
Explain without differentiating why the following differentiation cannot be correct:

$$\frac{d}{dx} \sqrt{1 + \left(\frac{x^2}{a^2}\right)} = \frac{2ax}{\sqrt{1 + \left(\frac{x^2}{a^2}\right)}}$$

where x is length and a is a constant.

Solution

• Observe that x and a must have the same units because the ratio x^2/a^2 must be dimensionless (because 1 is dimensionless).

• Thus, the left-hand side of the equation has units of $1/x$ (from d/dx). However, the right-hand side of the equation has units of x^2 (the product of ax).

• Consequently, something is wrong as the equation is not dimensionally consistent.

Questions

1. Which of the following best represents the force needed to lift a heavy suitcase?
 a. 25 N b. 25 kN c. 250 N d. 250 kN
2. Pick the correct answer(s); a watt is
 a. one joule per second b. equal to 1 (kg)(m2)/s2 c. the unit for all types of power
 d. all of the above e. none of the above
3. Is kg/s a basic or derived unit in SI?
4. Answer the following questions yes or no. Can you
 a. divide ft by s? b. divide m by cm? c. multiply ft by s? d. divide ft by cm? e. divide m by (deg) K? f. add ft and s?
 g. subtract m and (deg) K h. add cm and ft? i. add cm and m2? j. add 1 and 2 cm?
5. Why is it not possible to add 1 ft and 1 ft2?
6. What is g.?
7. Is the ratio of the numerator and denominator in a conversion factor equal to unity?
8. What is the difference, if any, between pound force and pound mass in the AE system?
9. Could a unit of force in the SI system be kilogram force?
10. Contrast the procedure for converting units within the SI system with that for the AE system.
11. What is the weight of a one pound mass at sea level? Would the mass be the same at the center of Earth? Would the weight be the same at the center of Earth?
12. What is the mass of an object that weighs 9.80 kN at sea level?
14. Explain why the so-called dimensionless group has no net dimensions.
15. If you divide all of a series of terms in an equation by one of the terms, will the resulting series of terms be dimensionless?
16. How might you make the following variables dimensionless:
 a. Length (of a pipe).
 b. Time (to empty a tank full of water).

Answers:

1. (c)
2. (a)
3. Derived.
4. (a) - (e) yes; (f) and (g) no; (h) and (i) no; (j) no.
5. The dimensions are not the same.
6. A conversion factor in the American Engineering system of units.
7. Yes.
8. lb is force and lb is mass, and the dimensions are different.
9. The unit is not legal in SI.
10. In SI the magnitudes of many of the units are scaled on the basis of 10, in AE. Consequently, the units are often ignored in making conversion in SI.
11. (a) 1 lb in the AE system of units; (b) yes; (c) no.
12. 1000 kg.
13. All additive terms on the right-hand side of an equation must have the same dimensions as those on the left-hand side.
14. All of the units cancel out.
15. Yes.
16. (a) Divide by the radius or diameter; (b) divide by the total time to empty the tank, or by a fixed unit of time.

Problems

1. Classify the following units as correct or incorrect units in the SI system:
 a. nm b. K c. sec d. N/mm e. kJ/(s)(m3)
2. Add 1 cm and 1 m.
3. Subtract 3 ft from 4 yards.
4. Divide 3 m by 2 m^0.5.
5. Multiply 2 ft by 4 lb.
6. What are the value and units of g in the SI system?
7. Electronic communication via radio travels at approximately the speed of light (186,000 miles/second). The edge of the solar system is roughly at Pluto, which is 3.6×10^9 miles from Earth at its closest approach. How many hours does it take for a radio signal from Earth to reach Pluto?

8. Determine the kinetic energy of one pound of fluid moving in a pipe at the speed of 3 feet per second.

9. Convert the following from AE to SI units:
 a. $4 \text{ lb}_m/\text{ft}$ to kg/m
 b. $1.00 \text{ lb}_m/(\text{ft}^3)(\text{s})$ to $\text{kg}/(\text{m}^3)(\text{s})$

10. Convert the following $1.57 \times 10^{-2} \text{ g}/(\text{cm})(\text{s})$ to $\text{lb}_m/(\text{ft})(\text{s})$

11. Convert 1.1 gal to ft^3.

12. Convert 1.1 gal to m^3.

13. An orifice meter is used to measure the rate of flow of a fluid in pipes. The flow rate is related to the pressure drop by the following equation

 $$u = c \sqrt{\frac{\Delta P}{\rho}}$$

 Where $u =$ fluid velocity
 $\Delta p =$ pressure drop 1 force per unit area
 $\rho =$ density of the flowing fluid
 $c =$ constant

 What are the units of c in the SI system of units?

14. The thermal conductivity k of a liquid metal is predicted via the empirical equation

 $$k = A \exp \left(\frac{B}{T} \right)$$

 where k is in $\text{J}/(\text{s})(\text{m})(\text{K})$ and A and B are constants. What are the units of A and B?

Answers:

1. (a), (d), (e) are correct.
2. Change units to get 101 cm.
3. Change units to get 9 ft.
4. 1.5 m.
5. 8 (ft)(lb).
6. 1, dimensionless.
7. 5.38 hr.
8. 0.14 (ft) (lb).
9. a. 5.96 kg/m; b. 16.0 kg/(m3)(s)
10. $1.06 \times 10^{-3} \text{ lb}_m/(\text{ft})(\text{s})$
11. 0.15 ft3
12. $4.16 \times 10^{-3} \text{ m}^3$.
13. c is dimensionless
14. A has the same units as k; B has the units of T.
1.2 Moles, Density and Concentration

1.2.1 Mole

In the SI system a mole is composed of 6.022×10^{23} (Avogadro's number) molecules. To convert the number of moles to mass and the mass to moles, we make use of the molecular weight – the mass per mole:

$$\text{Molecular Weight (MW)} = \frac{\text{Mass}}{\text{Mole}}$$

Thus, the calculations you carry out are

$$\text{the g mol} = \frac{\text{mass in g}}{\text{molecular weight}}$$

$$\text{the lb mol} = \frac{\text{mass in lb}}{\text{molecular weight}}$$

and

$$\text{Mass in g} = (\text{MW}) \text{ (g mol)}$$

$$\text{Mass in lb} = (\text{MW}) \text{ (lb mol)}$$

For example

$$\begin{align*}
100.0 \text{ g H}_2\text{O} \quad \frac{1 \text{ g mol H}_2\text{O}}{18.0 \text{ g H}_2\text{O}} &= 5.56 \text{ g mol H}_2\text{O} \\
6.0 \text{ lb mol O}_2 \quad \frac{32.0 \text{ lb O}_2}{1 \text{ lb mol O}_2} &= 192 \text{ lb O}_2
\end{align*}$$

- The atomic weight of an element is the mass of an atom based on the scale that assigns a mass of exactly 12 to the carbon isotope ^{12}C.

- A compound is composed of more than one atom, and the molecular weight of the compound is nothing more than the sum of the weights of atoms of which it is composed.

Example 8

What is the molecular weight of the following cell of a superconductor material? (The figure represents one cell of a larger structure.)

![Figure E2.1](image)

Solution
The molecular weight of the cell is 1764.3 g/g mol.

Example 9

If a bucket holds 2.00 lb of NaOH (MW=40), how many

a) Pound moles of NaOH does it contain?

b) Gram moles of NaOH does it contain?

Solution

\[
\begin{align*}
(a) & \quad \frac{2.00 \text{ lb NaOH}}{40.0 \text{ lb NaOH}} = 0.050 \text{ lb mol NaOH} \\
(b_1) & \quad \frac{2.00 \text{ lb NaOH}}{40.0 \text{ lb NaOH}} \times \frac{454 \text{ g mol}}{1 \text{ lb mol NaOH}} = 22.7 \text{ g mol} \\
(b_2) & \quad \frac{2.00 \text{ lb NaOH}}{454 \text{ g NaOH}} \times \frac{1 \text{ g mol NaOH}}{40.0 \text{ g NaOH}} = 22.7 \text{ g mol}
\end{align*}
\]

Example 10

How many pounds of NaOH (MW=40) are in 7.50 g mol of NaOH?

Solution

\[
\frac{7.50 \text{ g mol NaOH}}{454 \text{ g mol}} \times \frac{1 \text{ lb mol NaOH}}{40.0 \text{ lb NaOH}} = 0.661 \text{ lb NaOH}
\]

1.2.2 Density

Density is the ratio of mass per unit volume, as for example, kg/m3 or lb/ft3. Density has both a numerical value and units. **Specific volume** is the inverse of density, such as cm3/g or ft3/lb.

\[
\rho = \text{density} = \frac{\text{mass}}{\text{volume}} = \frac{m}{V}
\]

\[
\hat{V} = \text{specific volume} = \frac{\text{volume}}{\text{mass}} = \frac{V}{m}
\]

For example, given that the density of n-propyl alcohol is 0.804 g/cm3, what would be the volume of 90.0 g of the alcohol? The calculation is

\[
\frac{90.0 \text{ g}}{0.804 \text{ g}} = 112 \text{ cm}^3
\]

In a packed bed of solid particles containing void spaces, the bulk density is

\[
\rho_B = \text{bulk density} = \frac{\text{total mass of solids}}{\text{total empty bed volume}}
\]
A homogeneous mixture of two or more components, whether solid, liquid, or gaseous, is called a **solution**.

For some solutions, the density of the solution is

\[
V = \sum_{i=1}^{n} V_i \quad \text{where } n = \text{number of components}
\]

\[
m = \sum_{i=1}^{n} m_i
\]

\[
\rho_{\text{solution}} = \frac{m}{V}
\]

For others you cannot.

Specific Gravity

Specific gravity is commonly thought of as a dimensionless ratio.

\[
\text{sp.gr. of } A = \frac{(\text{g/cm}^3)_A}{(\text{g/cm}^3)_{\text{ref}}} = \frac{(\text{kg/m}^3)_A}{(\text{kg/m}^3)_{\text{ref}}} = \frac{(\text{lb/ft}^3)_A}{(\text{lb/ft}^3)_{\text{ref}}}
\]

- The reference substance for **liquids** and **solids** normally is **water**.
- The density of water is **1.000 g/cm3, 1000 kg/m3, or 62.43 lb/ft3 at 4°C**.
- The specific gravity of **gases** frequently is referred to **air**, but may be referred to other gases.

For Example If dibromopentane (DBP) has a specific gravity of 1.57, what is the density in (a) g/cm3? (b) lb/ft3? and (c) kg/m3?

\[
\begin{align*}
\text{(a)} & \quad \frac{1.57 \text{ g DBP}}{\text{cm}^3} \cdot \frac{1.00 \text{ g H}_2\text{O}}{\text{cm}^3} = 1.57 \text{ g DBP} \text{ cm}^3 \\
\text{(b)} & \quad \frac{1.57 \text{ lb DBP}}{\text{ft}^3} \cdot \frac{62.4 \text{ lb H}_2\text{O}}{\text{ft}^3} = 97.97 \text{ lb DBP} \text{ ft}^3 \\
\text{(c)} & \quad \frac{1.57 \text{ g DBP}}{\text{cm}^3} \left(\frac{100 \text{ cm}}{1 \text{ m}} \right)^3 \frac{1 \text{ kg}}{1000 \text{ g}} = 1.57 \times 10^3 \text{ kg DBP} \text{ m}^3 \\
\text{or} & \quad \frac{1.57 \text{ kg DBP}}{\text{m}^3} \cdot \frac{1.00 \times 10^3 \text{ kg H}_2\text{O}}{\text{m}^3} = 1.57 \times 10^3 \text{ kg DBP} \text{ m}^3
\end{align*}
\]
Example 11

If a 70% (by weight) solution of glycerol has a specific gravity of 1.184 at 15°C, what is the density of the solution in (a) g/cm3? (b) lbm/ft3? and (c) kg/m3?

Solution
(a) $(1.184 \text{ g glycerol/cm}^3)/(1 \text{ g water/cm}^3) = 1.184 \text{ g solution/cm}^3$.
(b) $(1.184 \text{ lb glycerol/ft}^3)/(1 \text{ lb water/ft}^3) = 73.9 \text{ lb solution/ft}^3$.
(c) $(1.184 \text{ kg glycerol/m}^3)/(1 \text{ kg water/m}^3) = 1.184 \times 10^3 \text{ kg solution/m}^3$.

The specific gravity of petroleum products is often reported in terms of a hydrometer scale called °API. The equation for the API scale is

\[°\text{API} = \frac{141.5}{\text{sp. gr. } 60^\circ \text{F}} - 131.5 \quad (\text{API gravity}) \quad (2.1) \]

or

\[\text{sp. gr. } 60^\circ \text{F} = \frac{141.5}{°\text{API} + 131.5}. \quad (2.2) \]

The volume and therefore the density of petroleum products vary with temperature, and the petroleum industry has established 60 °F as the standard temperature for volume and API gravity.

Example 12

In the production of a drug having a molecular weight of 192, the exit stream from the reactor flows at a rate of 10.5 L/min. The drug concentration is 41.2% (in water), and the specific gravity of the solution is 1.024. Calculate the concentration of the drug (in kg/L) in the exit stream, and the flow rate of the drug in kg mol/min.

Solution
Take 1 kg of the exit solution as a basis for convenience.

![Diagram](image)

Basis: 1 kg solution

\[
\begin{array}{c|c|c|c|c}
\text{Drug} & 0.412 \text{ kg} & \text{Water} & 0.588 \text{ kg} \\
\hline
\text{Exit stream} & 10.5 \text{ L/min} & \text{sp. gr. } = 1.024 \\
\end{array}
\]

\[
\begin{align*}
\text{density of solution} &= \frac{1.024 \text{ g soln/cm}^3}{1.000 \text{ g H}_2\text{O/cm}^3} \times \frac{1.000 \text{ g H}_2\text{O/cm}^3}{1.000 \text{ kg soln/1 cm}^3} = 1.024 \text{ g soln/cm}^3 \\
\text{0.412 kg drug} &| 1.024 \text{ g soln} | 1 \text{ kg} | 10^3 \text{ cm}^3| 1 \text{ L} = 0.422 \text{ kg drug/L soln} \\
\text{0.588 kg water} &| 1 \text{ cm}^3 | 10^3 \text{ g} | 1 \text{ L} &= \\
\end{align*}
\]

To get the flow rate, take a different basis, namely 1 minute.

Basis: 1 min = 10.5 L solution

\[
\begin{align*}
\text{10.5 L soln} &| 0.422 \text{ kg drug} | 1 \text{ kg mol drug} | 0.023 \text{ kg mol/min} \\
\text{1 min} &| 1 \text{ L soln} | 192 \text{ kg drug} \\
\end{align*}
\]
Flow Rate

For continuous processes the flow rate of a process stream is the rate at which material is transported through a pipe. The mass flow rate (\(\dot{m} \)) of a process stream is the mass (m) transported through a line per unit time (t).

\[\dot{m} = \frac{m}{t} \]

The volumetric flow rate (F) of a process stream is the volume (V) transported through a line per unit time.

\[F = \frac{V}{t} \]

The molar flow (\(\dot{n} \)) rate of a process stream is the number of moles (n) of a substance transported through a line per unit time.

\[\dot{n} = \frac{n}{t} \]

Mole Fraction and Mass (Weight) Fraction

- **Mole fraction** is simply the number of moles of a particular compound in a mixture or solution divided by the total number of moles in the mixture or solution.
- This definition holds for gases, liquids, and solids.
- Similarly, the mass (weight) fraction is nothing more than the mass (weight) of the compound divided by the total mass (weight) of all of the compounds in the mixture or solution.

Mathematically, these ideas can be expressed as

\[
\text{mole fraction of } A = \frac{\text{moles of } A}{\text{total moles}}
\]

\[
\text{mass (weight) fraction of } A = \frac{\text{mass of } A}{\text{total mass}}
\]

Mole percent and mass (weight) percent are the respective fractions times 100.

Example 13

An industrial-strength drain cleaner contains 5 kg of water and 5 kg of NaOH. What are the mass (weight) fractions and mole fractions of each component in the drain cleaner container?

Solution

<table>
<thead>
<tr>
<th>Component</th>
<th>kg</th>
<th>Weight Fraction</th>
<th>Mol. Wt.</th>
<th>kg mol</th>
<th>Mole Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>5.00</td>
<td>0.500</td>
<td>18.0</td>
<td>0.278</td>
<td>0.278 = 0.69</td>
</tr>
<tr>
<td>NaOH</td>
<td>5.00</td>
<td>0.500</td>
<td>40.0</td>
<td>0.125</td>
<td>0.125 = 0.31</td>
</tr>
<tr>
<td>Total</td>
<td>10.00</td>
<td>1.000</td>
<td></td>
<td>0.403</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The kilogram moles are calculated as follows:

\[
\begin{align*}
5.00 \text{ kg } H₂O & \cdot \frac{1 \text{ kg mol } H₂O}{18.0 \text{ kg } H₂O} = 0.278 \text{ kg mol } H₂O \\
5.00 \text{ kg } NaOH & \cdot \frac{1 \text{ kg mol } NaOH}{40.0 \text{ kg } NaOH} = 0.125 \text{ kg mol } NaOH
\end{align*}
\]
Adding these quantities together gives the total kilogram moles.

Example 14

In normal living cells, the nitrogen requirement for the cells is provided from protein metabolism (i.e., consumption of the protein in the cells). When individual cells are commercially grown, \((\text{NH}_4)_2\text{SO}_4\) is usually used as the source of nitrogen. Determine the amount of \((\text{NH}_4)_2\text{SO}_4\) consumed in a fermentation medium in which the final cell concentration is 35 g/L in a 500 L volume of the fermentation medium. Assume that the cells contain 9 wt. % N, and that \((\text{NH}_4)_2\text{SO}_4\) is the only nitrogen source.

Solution

Basis: 500 L solution containing 35 g/L

\[
\frac{500 \text{ L}}{\cancel{\text{L}}} \times \frac{35 \text{ g cell}}{\cancel{\text{L}}} \times \frac{1\ \text{g mol N}}{14\ \text{g N}} \times \frac{1\ \text{g mol (NH}_4)_2\text{SO}_4}{1\ \text{g mol N}} \times \frac{132\ \text{g (NH}_4)_2\text{SO}_4}{1\ \text{g mol (NH}_4)_2\text{SO}_4} = 14,850\ \text{g (NH}_4)_2\text{SO}_4
\]

Analyses of Multi Components Solutions and Mixtures

The composition of gases will always be presumed to be given in mole percent or fraction unless specifically stated otherwise.

The composition of liquids and solids will be given by mass (weight) percent or fraction unless otherwise specifically stated.

For Example Table below lists the detailed composition of dry air (composition of air 21% \(\text{O}_2\) and 79% \(\text{N}_2\)).

<table>
<thead>
<tr>
<th>Component</th>
<th>Moles = percent</th>
<th>Mol. wt.</th>
<th>Lb or kg</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O}_2)</td>
<td>21.0</td>
<td>32</td>
<td>672</td>
<td>23.17</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>79.0</td>
<td>28.2</td>
<td>2228</td>
<td>76.83</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td>2900</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The average molecular weight is 2900 lb/100 lb mol = 29.0, or 2900 kg/100 kg mol = 29

1.2.3 Concentration

Concentration generally refers to the quantity of some substance per unit volume.

a. Mass per unit volume (lb of solute/ft\(^3\) of solution, g of solute/L, lb of solute/barrel, kg of solute/m\(^3\)).

b. Moles per unit volume (lb mol of solute/ft\(^3\) of solution, g mol of solute/L, g mol of solute/cm\(^3\)).

c. Parts per million (ppm); parts per billion (ppb), a method of expressing the concentration of extremely dilute solutions; ppm is equivalent to a mass (weight) fraction for solids and liquids because the total amount of material is of a much higher order of magnitude than the amount of solute; it is a mole fraction for gases.

d. Parts per million by volume (ppmv) and parts per billion by volume (ppbv)

e. Other methods of expressing concentration with which you may be familiar are molarity (g mol/L), molality (mole solute/kg solvent), and normality (equivalents/L).

Example 14
The current OSHA 8-hour limit for HCN (MW = 27.03) in air is 10.0 ppm. A lethal dose of HCN in air is (from the Merck Index) 300 mg/kg of air at room temperature. How many mg HCN/kg air is 10.0 ppm? What fraction of the lethal dose is 10.0 ppm?
Solution

Basis: 1 kg mol of the air/HCN mixture

The 10.0 ppm is

\[
\frac{10.0 \text{ g mol HCN}}{10^6 \text{ (air + HCN) g mol}} = \frac{10.0 \text{ g mol HCN}}{10^5 \text{ g mol air}}
\]

a. \(\frac{10.0 \text{ g mol HCN}}{10^6 \text{ g mol air}} \times \frac{27.03 \text{ g HCN}}{1 \text{ g mol HCN}} \times \frac{1 \text{ g mol air}}{29 \text{ g air}} \times \frac{1000 \text{ mg HCN}}{1 \text{ g HCN}} \times \frac{1000 \text{ g air}}{1 \text{ kg air}} = 9.32 \text{ mg HCN/kg air} \)

b. \(\frac{9.32}{300} = 0.031 \)

Example 15

A solution of HNO₃ in water has a specific gravity of 1.10 at 25°C. The concentration of the HNO₃ is 15 g/L of solution. What is the

a. Mole fraction of HNO₃ in the solution?
b. ppm of HNO₃ in the solution?

Solution

Basis: 1 L of solution

\[
\frac{15 \text{ g HNO}_3}{1 \text{ L soln}} \times \frac{1 \text{ L}}{1000 \text{ cm}^3} = 0.01364 \text{ g HNO}_3 \text{ g soln}
\]

Basis: 100 g solution

The mass of water in the solution is: 100 - 0.0134 = 99.986 g H₂O.

<table>
<thead>
<tr>
<th>g</th>
<th>MW</th>
<th>g mol</th>
<th>mol fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO₃</td>
<td>0.01364</td>
<td>63.02</td>
<td>2.164 × 10⁻⁴</td>
</tr>
<tr>
<td>H₂O</td>
<td>99.986</td>
<td>18.016</td>
<td>5.550</td>
</tr>
<tr>
<td>Total</td>
<td>5.550</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

b. \(\frac{0.01364}{1} = \frac{13.640}{10^6} \text{ or } 13.640 \text{ ppm} \)

Example 16

To avoid the possibility of explosion in a vessel containing gas having the composition of 40% N₂, 45% O₂, and 15% CH₄, the recommendation is to dilute the gas mixture by adding an equal amount of pure N₂. What is the final mole fraction of each gas?

Solution

The basis is 100 moles of initial gas

<table>
<thead>
<tr>
<th>Composition</th>
<th>Original Mixture mol%</th>
<th>After Addition</th>
<th>Final Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N₂</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>40</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>O₂</td>
<td>45</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>CH₄</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>
Questions

1. Answer the following questions true or false:
 a. The pound mole is comprised of 2.73×10^{26} molecules
 b. The kilogram mole is comprised of 6.022×10^{26} molecules.
 c. Molecular weight is the mass of a compound or element per mole.
2. What is the molecular weight of acetic acid (CH_3COOH)?
3. For numbers such as 2 mL of water + 2 mL of ethanol, does the sum equal to 4 mL of the solution?
4. Answer the following questions true or false:
 a. The inverse of the density is the specific volume.
 b. Density of a substance is the mass per unit volume.
 c. The density of water is less than the density of mercury.
5. A cubic centimeter of mercury has a mass of 13.6 g at Earth’s surface. What is the density of mercury?
6. What is the approximate density of water at room temperature in kg/m3?
7. For liquid HCN, a handbook gives: sp. gr. $10^\circ C/4^\circ C = 1.2675$. What does this statement mean?
8. Answer the following questions true or false:
 a. The density and specific gravity of mercury are the same.
 b. Specific gravity is the ratio of two densities.
 c. If you are given the value of a reference density, you can determine the density of a substance of interest by multiplying by the specific gravity.
 d. The specific gravity is a dimensionless quantity.
9. A mixture is reported as 15% water and 85% ethanol. Should the percentages be deemed to be by mass, mole, or volume?
10. Answer the following questions true or false:
 a) In engineering practice the compositions of liquids and solids are usually denoted in weight (mass) fraction or percent.
 b) In engineering practice the composition of gases is usually denoted in mole fraction or percent.
 c) e. A pseudo-average molecular weight can be calculated for a mixture of pure components whether solid, liquid, or gases.
11. Do parts per million denote a concentration that is a mole ratio?
12. Does the concentration of a component in a mixture depend on the amount of the mixture?
13. Pick the correct answer. How many ppm are there in 1 ppb? (a) 1000, (b) 100, (c) 1, (d) 0.1, (e) 0.01, (f) 0.001?
14. How many ppb are there in 1 ppm?
15. Does 50 ppm represent an increase of five times a value of 10 ppm?

Answers:
1. (a) T; (b) T; (c) T
2. 60.05
3. No
4. (a) T; (b) T; (c) T
5. 13.6 g/cm3
6. 1000 kg/m3
7. The statement means that the density at 10°C of liquid HCN is 1.2675 times the density of water at 4°C.
8. (a) F – the units differ; (b) T; (c) T; (d) F.
9. Mass
10. (a) T; (b) T; (c) T
11. For gases but not for liquids or solids.
12. No
13. 0.001
14. 1000
15. No (4 times)

Problems
1. Convert the following:
 a) 120 g mol of NaCl to g.
 b) 120 g of NaCl to g mol.
 c) 120 lb mol of NaCl to lb.
 d) 120 lb of NaCl to lb mol.
2. Convert 39.8 kg of NaCl per 100 kg of water to kg mol of NaCl per kg mol of water.
3. How many lb mol of NaNO₃ are there in 100 lb?
4. The density of a material is 2 kg/m³. What is its specific volume?
5. An empty 10 gal tank weighs 4.5 lb. What is the total weight of the tank plus the water when it is filled with 5 gal of water?
6. If you add 50 g of sugar to 500 mL of water, how do you calculate the density of the sugar solution?
7. For ethanol, a handbook gives: sp. gr. 60°F = 0.79389. What is the density of ethanol at 60°F?
8. The specific gravity of steel is 7.9. What is the volume in cubic feet of a steel ingot weighing 4000 lb?
9. The specific gravity of a solution is 0.80 at 70°F. How many cubic feet will be occupied by 100 lb of the solution at 70°F?
10. A solution in water contains 1.704 kg of HNO₃/kg H₂O, and the solution has a specific gravity of 1.382 at 20°C. What is the mass of HNO₃ in kg per cubic meter of solution at 20°C?
11. Forty gal/min of a hydrocarbon fuel having a specific gravity of 0.91 flows into a tank truck with a load limit of 40,000 lb of fuel. How long will it take to fill the tank in the truck?
12. Pure chlorine enters a process. By measurement it is found that 2.4 kg of chlorine pass into the process every 3.1 minutes. Calculate the molar flow rate of the chlorine in kg mol/hr.
13. Commercial sulfuric acid is 98% H₂SO₄ and 2% H₂O. What is the mole ratio of H₂SO₄ to H₂O?
14. A compound contains 50% sulfur and 50% oxygen by mass. Is the empirical formula of the compound (1) SO, (2) SO₂, (3) SO₃, or (4) SO₄?
15. How many kg of activated carbon (a substance used in removing trace impurities) must be mixed with 38 kg of sand so that the final mixture is 28% activated carbon?
16. A gas mixture contains 40 lb of O₂, 25 lb of SO₂, and 30 lb of SO₃. What is the composition of the mixture in mole fractions?
17. Saccharin, an artificial sweetener that is 3000 times sweeter than sucrose, is composed of 45.90% carbon, 2.73% hydrogen, 26.23% oxygen, 7.65% nitrogen, and 17.49% sulfur. Is the molecular formula of saccharin (a) C₁₂H₁₀O₆N₂S₂, (b) C₃H₄O₃NS, (c) C₃H₅O₂NS, and (d) C₃H₅O₅NS?
18. A mixture of gases is analyzed and found to have the following composition: CO₂ 12.0%, CO 6.0%, CH₄ 27.3%, H₂ 9.9% and N₂ 44.8%. How much will 3 lb mol of this gas weigh?

19. A liquefied mixture of n-butane, n-pentane, and n-hexane has the following composition: n-C₄H₁₀ 50%, n-C₅H₁₂ 30%, and n-C₆H₁₄ 20%. For this mixture, calculate:
 a) The weight fraction of each component.
 b) The mole fraction of each component.
 c) The mole percent of each component.
 d) The average molecular weight of the mixture.

20. How many mg/L is equivalent to a 1.2% solution of a substance in water?

Answers:

1. (a) 7010 g; (b) 2.05 g mol; (c) 7010 lb; (d) 2.05 lb mol
2. 0.123 kg mol NaCl/kg mol H₂O
3. 1.177 lb mol
4. 0.5 m³/kg
5. 46.2 lb
6. Measure the mass of water (should be about 500g) and add it to 50 g. Measure the volume of the solution (will not be 450 mL). Divide the mass by the volume.
7. 0.79389 g/cm³ (assuming the density of water is also at 60°F)
8. 8.11 ft³
9. 2 ft³
10. 870 kg HNO₃/m³ solution.
11. 132 min
12. 0.654 kg mol/hr
13. 9
14. SO₂
15. 14.8 kg
16. O₂ 0.62; SO₂ 0.19; SO₃ 0.19
17. (d)
18. 72.17 lb
19. (a) C₄: 0.50, C₅: 0.30, C₆: 0.20; (b) C₄: 0.57, C₅: 0.28, C₆: 0.15; (c) C₄: 57, C₅: 28, C₆: 15; (d) 66.4 kg/kg mol
20. 12000 mg/L

1.3 Choosing a Basis

- A **basis** is a reference chosen by you for the calculations you plan to make in any particular problem, and a proper choice of basis frequently makes the problem much easier to solve.
- The **basis** may be a **period of time** such as **hours**, or a given **mass of material**, such as 5 kg of CO₂, or some other convenient quantity.
- For **liquids** and **solids** in which a **mass (weight)** analysis applies, a convenient basis is often **1 or 100 lb or kg**; similarly, **1 or 100 moles** is often a good choice for a **gas**.
Example 17
Gas mixture 10.0% H\(_2\), 40.0% CH\(_4\), 30.0% CO, and 20.0% CO\(_2\), what is the average molecular weight of the gas?

Solution

Basis: 100 kg mol or lb mol of gas

<table>
<thead>
<tr>
<th>Component</th>
<th>Percent = kg mol or lb mol</th>
<th>Mol wt.</th>
<th>Kg or lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2)</td>
<td>20.0</td>
<td>44.0</td>
<td>880</td>
</tr>
<tr>
<td>CO</td>
<td>30.0</td>
<td>28.0</td>
<td>840</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>40.0</td>
<td>16.04</td>
<td>642</td>
</tr>
<tr>
<td>H(_2)</td>
<td>10.0</td>
<td>2.02</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td></td>
<td>2382</td>
</tr>
</tbody>
</table>

Average molecular weight = \(\frac{2382 \text{ kg}}{100 \text{ kg mol}}\) = 23.8 kg/kg mol

Other Method for Solution:
Average molecular weight = 0.2 * 44 + 0.3 * 28 + 0.4 * 16.04 + 0.1 * 2.02 = 23.8 kg/kg mol

Example 18
A liquefied mixture has the following composition: n-C\(_4\)H\(_{10}\) 50% (MW=58), n-C\(_5\)H\(_{12}\) 30% (MW=72), and n-C\(_6\)H\(_{14}\) 20% (MW=86). For this mixture, calculate: (a) mole fraction of each component, (b) Average molecular weight of the mixture.

Solution

Basis: 100 kg

<table>
<thead>
<tr>
<th>% (= \text{kg})</th>
<th>wt fr</th>
<th>MW</th>
<th>kg mol</th>
<th>mol fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n - C(4)H({10})</td>
<td>50</td>
<td>58</td>
<td>0.86</td>
<td>0.57</td>
</tr>
<tr>
<td>n - C(5)H({12})</td>
<td>30</td>
<td>72</td>
<td>0.42</td>
<td>0.28</td>
</tr>
<tr>
<td>n - C(6)H({14})</td>
<td>20</td>
<td>86</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
<td>1.51</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Average molecular weight = \(\frac{\text{total mass}}{\text{total mol}}\) = \(\frac{100 \text{ kg}}{1.51 \text{ kg mol}}\) = 66

Example 19
In a ternary alloy such as Nd\(_{4.5}\)Fe\(_{77}\)B\(_{18.5}\) the average grain size is about 30 nm. By replacing 0.2 atoms of Fe with atoms of Cu, the grain size can be reduced (improved) to 17 nm.

(a) What is the molecular formula of the alloy after adding the Cu to replace the Fe?

(b) What is the mass fraction of each atomic species in the improved alloy?

Solution

Basis: 100 g mol (or atoms) of Nd\(_{4.5}\)Fe\(_{77}\)B\(_{18.5}\)

(a) The final alloy is Nd\(_{4.5}\)Fe\(_{76.8}\)B\(_{18.5}\)Cu\(_{0.2}\).

(b) Use a table to calculate the respective mass fractions.
Example 20

A medium-grade bituminous coal analyzes as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Original g mol</th>
<th>Final g mol</th>
<th>MW</th>
<th>g</th>
<th>Mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd</td>
<td>4.5</td>
<td>4.5</td>
<td>144.24</td>
<td>649.08</td>
<td>0.126</td>
</tr>
<tr>
<td>Fe</td>
<td>77</td>
<td>76.8</td>
<td>55.85</td>
<td>4289.28</td>
<td>0.833</td>
</tr>
<tr>
<td>B</td>
<td>18.5</td>
<td>18.5</td>
<td>10.81</td>
<td>199.99</td>
<td>0.039</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td>0.2</td>
<td>12.71</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>5151.06</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

The residuum is C and H, and the mole ratio in the residuum is H/C = 9. Calculate the weight (mass) fraction composition of the coal with the ash and the moisture omitted (ash – and moisture – free).

Solution

Take as a basis 100 kg of coal because then percent = kilograms.

Basis: 100 kg of coal

The sum of the S + N + O + ash + water is 2 + 1 + 6 + 11 + 3 = 23 kg

We need to determine the individual kg of C and of H in the 77 kg total residuum.

To determine the kilograms of C and H, you have to select a new basis.

Basis: 100 kg mol (Because the H/C ratio is given in terms of moles, not weight)

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole fraction</th>
<th>kg mol</th>
<th>Mol. wt.</th>
<th>kg</th>
<th>Mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>9</td>
<td>0.90</td>
<td>1.008</td>
<td>90.7</td>
<td>0.43</td>
</tr>
<tr>
<td>C</td>
<td>1 + 9</td>
<td>0.10</td>
<td>10</td>
<td>120</td>
<td>0.57</td>
</tr>
</tbody>
</table>

H: (77kg) (0.43) = 33.15 kg

C: (77kg) (0.57) = 43.85 kg

Finally, we can prepare a table summarizing the results on the basis of 1 kg of the coal ash-free and water-free.
1.4 Temperature

Temperature is a measure of the energy (mostly kinetic) of the molecules in a system. This definition tells us about the amount of energy.

Other scientists prefer to say that temperature is a property of the state of thermal equilibrium of the system with respect to other systems because temperature tells us about the capability of a system to transfer energy (as heat).

Four types of temperature:

Two based on a *relative scale*, degree Fahrenheit (°F) and Celsius (°C), and two based on an *absolute scale*, degree Rankine (°R) and Kelvin (K).

Temperature Conversion

\[
\Delta \text{°F} = \Delta \text{°R} \\
\Delta \text{°C} = \Delta \text{K}
\]

Also, the Δ°C is larger than the Δ°F

\[
\frac{\Delta \text{°C}}{\Delta \text{°F}} = 1.8 \quad \text{or} \quad \Delta \text{°C} = 1.8 \Delta \text{°F}
\]

\[
\frac{\Delta \text{K}}{\Delta \text{°R}} = 1.8 \quad \text{or} \quad \Delta \text{K} = 1.8 \Delta \text{°R}
\]

The proper meaning of the symbols °C, °F, K, and °R, as either the temperature or the unit temperature difference, must be interpreted from the context of the equation or sentence being examined.

Suppose you have the relation:

\[T_{\text{°F}} = a + bT_{\text{°C}}\]

What are the units of \(a\) and \(b\)? The units of \(a\) must be °F for consistency. The correct units for \(b\) must involve the conversion factor \((1.8 \Delta \text{°F}/\Delta \text{°C})\), the factor that converts the size of a interval on one temperature scale

\[T_{\text{°F}} = a_{\text{°F}} + \left(\frac{1.8 \Delta \text{°F}}{\Delta \text{°C}}\right) T_{\text{°C}}\]

Unfortunately, the units for \(b\) are usually ignored; just the value of \(b\) (1.8) is employed.

The relations between °C, °F, K, and °R are:

\[T_{\text{°R}} = T_{\text{°F}} \left(\frac{1}{1.8}\right) + 460 \text{°R}\]

Or \(T_{\text{°R}} = T_{\text{°F}} + 460\)

\[T_{\text{K}} = T_{\text{°C}} \left(\frac{1}{1.8}\right) + 273 \text{ K}\]

Or \(T_{\text{K}} = T_{\text{°C}} + 273\)

\[T_{\text{°F}} = 32 \text{°F} = T_{\text{°C}} \left(\frac{1.8}{\Delta \text{°C}}\right)\]

Or \(T_{\text{°F}} = 1.8 T_{\text{°C}} + 32\)

\[T_{\text{°C}} = (T_{\text{°F}} - 32 \text{°F}) \left(\frac{1}{1.8}\right)\]

Or \(T_{\text{°C}} = 1.8 T_{\text{°F}} - 32\)
Example 21
Convert 100 °C to (a) K, (b) °F, and (c) °R.

Solution

(a) \((100 + 273)°C \cdot \frac{1 K}{1 °C} = 373 K\)

or with suppression of the \(\Delta\) symbol,

\((100 + 273)°C \cdot \frac{1 K}{1 °C} = 373 K\)

(b) \((100°C) \cdot \frac{1.8 °F}{1 °C} + 32°F = 212°F\)

(c) \((212 + 460)°F \cdot \frac{1 °R}{1 °F} = 672°R\)

or

\((373 K) \cdot \frac{1.8 °R}{1 °K} = 672°R\)

Example 22
The heat capacity of sulfuric acid has the units J/(g mol)(°C), and is given by the relation

\[\text{Heat capacity} = 139.1 + 1.56 \times 10^{-1} T \]

where \(T\) is expressed in °C. Modify the formula so that the resulting expression has the associated units of Btu/(lb mol)(°R) and \(T\) is in °R.

Solution

\[\begin{align*}
T_F &= 1.8 T_C + 32 \\
T_C &= (T_F - 32)/1.8 \\
T_R &= T_F + 460 \\
T_F &= T_R - 460 \\
\therefore T_C &= (T_R - 460 - 32)/1.8
\end{align*} \]

heat capacity = \(139.1 + 1.56 \times 10^{-1} \left(\frac{T_R - 460 - 32}{1.8}\right)\)

\[\begin{align*}
&\times \frac{1 J}{(g \text{ mol})(°C)} \times \frac{1 \text{ Btu}}{1055 J} \times \frac{454 \text{ g mol}}{1 \text{ lb mol}} \times \frac{1 °C}{1.8°R} \\
&= 23.06 + \frac{2.07}{T_R} \times 10^{-2} \text{Btu/(lb mol)(°R)}
\end{align*}\]

Note the suppression of the \(\Delta\) symbol in the conversion between °C and °R.

Problems

1. Complete the following table with the proper equivalent temperatures:

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
<th>K</th>
<th>°R</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.0</td>
<td>698</td>
<td>69.8</td>
</tr>
</tbody>
</table>

2. The heat capacity of sulfur is \(C_p = 15.2 + 2.68T\), where \(C_p\) is in J/(g mol)(K) and \(T\) is in K. Convert this expression so that \(C_p\) is in cal/(g mol)(°F) with \(T\) in °F.
Answers:

1. | °C | °F | K | °R |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-40.0</td>
<td>-40.0</td>
<td>233</td>
<td>420</td>
</tr>
<tr>
<td>25.0</td>
<td>77.0</td>
<td>298</td>
<td>537</td>
</tr>
<tr>
<td>425</td>
<td>796</td>
<td>698</td>
<td>1256</td>
</tr>
<tr>
<td>-234</td>
<td>-390</td>
<td>38.8</td>
<td>69.8</td>
</tr>
</tbody>
</table>

2. \(C_p = 93.2 + 0.186 T \)°F

1.5 Pressure

Pressure and Its Units

Pressure is defined as “the normal (perpendicular) force per unit area” (Figure 5.1). The pressure at the bottom of the static (nonmoving) column of mercury exerted on the sealing plate is

\[
 p = \frac{F}{A} = \rho gh + p_0 \tag{5.1}
\]

Where \(p \) = pressure at the bottom of the column of the fluid, \(F \) = force, \(A \) = area, \(\rho \) = density of fluid, \(g \) = acceleration of gravity, \(h \) = height of the fluid column, and \(p_0 \) = pressure at the top of the column of fluid.

![Figure 5.1 Pressure is the normal force per unit area. Arrows show the force exerted on the respective areas.](image)

For Example. Suppose that the cylinder of fluid in Figure 5.1 is a column of mercury that has an area of 1 cm\(^2\) and is 50 cm high. The density of the Hg is 13.55 g/cm\(^3\). Thus, the force exerted by the mercury alone on the 1 cm\(^2\) section of the bottom plate by the column of mercury is

\[
 F = \frac{13.55 \text{ g/cm}^3}{\text{cm}^3} \left| \frac{980 \text{ cm}}{s^2} \right| \left| \frac{50 \text{ cm}}{1 \text{ cm}^2} \right| \left| \frac{1 \text{ kg}}{1000 \text{ g}} \right| \left| \frac{1 \text{ m}}{100 \text{ cm}} \right| \left| \frac{1(\text{N})(s^2)}{1(\text{kg})(m)} \right |
\]

\[
 = 6.64 \text{ N}
\]

The pressure on the section of the plate covered by the mercury is the force per unit area of the mercury plus the pressure of the atmosphere

\[
 p = \frac{6.64 \text{ N}}{1 \text{ cm}^2} \left| \frac{100 \text{ cm}}{1 \text{ m}} \right| ^2 \left| \frac{(1 \text{ m}^2)(1 \text{ Pa})}{1 \text{ N}} \right| \left| \frac{1 \text{ kPa}}{1000 \text{ Pa}} \right| + p_0 = 66.4 \text{ kPa} + p_0
\]

If we had started with units in the AE system, the pressure would be computed as [the density of mercury is 845.5 lb/ft\(^3\)].
Measurement of Pressure

Pressure, like temperature, can be expressed using either an absolute or a relative scale.

![Open-end manometer](image)

Figure 5.2 (a) Open-end manometer showing a pressure above atmospheric pressure. (b) **Manometer** measuring an absolute pressure.

The relationship between relative and absolute pressure is given by the following expression:

\[
\text{Gauge Pressure} + \text{Barometer Pressure} = \text{Absolute Pressure}
\]

...5.2

The **standard atmosphere** is defined as the pressure (in a standard gravitational field) equivalent to 1 atm or 760 mm Hg at 0°C or other equivalent.

The standard atmosphere is equal to:

- 1.00 atmospheres (atm)
- 33.91 feet of water (ft H₂O)
- 14.7 pounds (force) per square inch absolute (psia)
- 29.92 inches of mercury (in. Hg)
- 760.0 millimeters of mercury (mm Hg)
- 1.013 \times 10^5 pascal (Pa) or newtons per square meter (N/m²); or 101.3 kPa

Example, convert 35 psia to inches of mercury and kPa.

\[
\begin{align*}
35 \text{ psia} & \quad 29.92 \text{ in. Hg} \\
14.7 \text{ psia} & \quad = 71.24 \text{ in. Hg}
\end{align*}
\]

\[
\begin{align*}
35 \text{ psia} & \quad 101.3 \text{ kPa} \\
14.7 \text{ psia} & \quad = 241 \text{ kPa}
\end{align*}
\]

Example. What is the equivalent pressure to 1 kg/cm² (i.e., kg/cm²) in pascal (g = 9.8 m/s²)

\[1 \text{ kg/cm}^2 \times [9.8 \text{ m/s}^2] \times [(100 \text{ cm}/1 \text{ m})^2] = 9.8 \times 10^4 \text{ N/m}^2 \text{ (or Pa)}\]

Example 23

What is the equivalent pressure to 60 Gpa (gigapascal) in

(a) atmospheres (b) psia (c) inches of Hg (d) mm of Hg
Example 24

The pressure gauge on a tank of CO₂ used to fill soda-water bottles reads 51.0 psi. At the same time the barometer reads 28.0 in. Hg. What is the absolute pressure in the tank in psia? See Figure E5.2.

Solution

Basis: 60 GPa

\[
\begin{align*}
(a) & \quad \frac{60 \text{ GPa}}{1 \text{ GPa}} \cdot \frac{10^6 \text{ kPa}}{1 \text{ GPa}} \cdot \frac{1 \text{ atm}}{101.3 \text{ kPa}} = 0.59 \times 10^6 \text{ atm} \\
(b) & \quad \frac{60 \text{ GPa}}{1 \text{ GPa}} \cdot \frac{10^6 \text{ kPa}}{1 \text{ GPa}} \cdot \frac{14.696 \text{ psia}}{101.3 \text{ kPa}} = 8.70 \times 10^6 \text{ psia} \\
(c) & \quad \frac{60 \text{ GPa}}{1 \text{ GPa}} \cdot \frac{10^6 \text{ kPa}}{1 \text{ GPa}} \cdot \frac{29.92 \text{ in. Hg}}{101.3 \text{ kPa}} = 1.77 \times 10^7 \text{ in. Hg} \\
(d) & \quad \frac{60 \text{ GPa}}{1 \text{ GPa}} \cdot \frac{10^6 \text{ kPa}}{1 \text{ GPa}} \cdot \frac{760 \text{ mm Hg}}{101.3 \text{ kPa}} = 4.50 \times 10^8 \text{ mm Hg}
\end{align*}
\]

Example 25

Small animals such as mice can live (although not comfortably) at reduced air pressures down to 20 kPa absolute. In a test, a mercury manometer attached to a tank, as shown in Figure E5.3, reads 64.5 cm Hg and the barometer reads 100 kPa. Will the mice survive?

Solution

Atmospheric pressure = \(\frac{28.0 \text{ in. Hg}}{29.92 \text{ in. Hg}} \cdot 14.7 \text{ psia} = 13.76 \text{ psia} \)

The absolute pressure in the tank is

\[51.0 \text{ psia} + 13.76 \text{ psia} = 64.8 \text{ psia} \]
Solution
You are expected to realize from the figure that the tank is below atmospheric pressure because the left leg of the manometer is higher than the right leg, which is open to the atmosphere. Consequently, to get the absolute pressure you subtract the 64.5 cm Hg from the barometer reading.

The absolute pressure in the tank is

\[
100 \text{ kPa} - \frac{64.5 \text{ cm Hg}}{76.0 \text{ cm Hg}} = 100 - 86 = 14 \text{ kPa absolute}
\]

The mice probably will not survive.

Differential Pressure Measurements
When the columns of fluids are at equilibrium (see Figure 5.3), the relationship among \(\rho_1, \rho_2, \rho_3 \), and the heights of the various columns of fluid is as follows:

\[
P_1 + \rho_1 d_1 g = P_2 + \rho_2 d_2 g + \rho_3 d_3 g \quad \ldots 5.3
\]

Note
If fluids 1 and 3 are gases, and fluid 2 is mercury, the density of the gas is so much less than that of mercury that you can ignore the term involving the gas in Equation (5.3) for practical applications.

* Can you show for the case in which \(\rho_1 = \rho_3 = \rho \) that the manometer expression reduces to the differential manometer equation:

\[
P_1 - P_2 = (\rho_2 - \rho) g d_2 \quad \ldots 5.4
\]

Example 26
In measuring the flow of fluid in a pipeline as shown in Figure E5.4, a differential manometer was used to determine the pressure difference across the orifice plate. The flow rate was to be calibrated with the observed pressure drop (difference). Calculate the pressure drop \(p_1 - p_2 \) in pascals for the manometer reading in Figure E5.4.
Solution

In this problem you cannot ignore the water density above the manometer fluid.

\[
p_1 - p_2 = (\rho_f - \rho)gd
\]

\[
= \frac{(1.10 - 1.00) \times 10^3 \text{ kg}}{\text{m}^3} \left(\frac{9.807 \text{ m}}{\text{s}^2} \right) \left(\frac{22 \times (10^{-3}) \text{ m}}{1 \text{ (N) (s^2) (m) (kg) (m)}\text{ (1(N)}}
\]

\[= 21.6 \text{ Pa}\]

Example 5.5

Air is flowing through a duct under a draft of 4.0 cm H_2O. The barometer indicates that the atmospheric pressure is 730 mm Hg. What is the absolute pressure of the air in inches of mercury? See Figure E5.5

Solution

In this problem you can ignore the gas density above the manometer fluid and the air above the open end of the manometer.

Atmospheric pressure = \[\frac{730 \text{ mm Hg}}{760 \text{ mm Hg}} = 28.7 \text{ in. Hg}\]

Next, convert 4.0 cm H_2O to in. Hg:

\[
\frac{4.0 \text{ cm H}_2\text{O}}{2.54 \text{ cm}} = \frac{1 \text{ in.}}{12 \text{ in.}} = 0.12 \text{ in. Hg}
\]

Since the reading is 4.0 cm H_2O draft (under atmospheric), the absolute reading in uniform units is

28.7 in. Hg - 0.12 in. Hg = 28.6 in. Hg absolute

Questions

1. Figure SAT5.1Q2 shows four closed containers completely filled with water. Order the containers from the one exerting the highest pressure to the lowest on their respective base.
2. Answer the following questions true or false:
 a. Atmospheric pressure is the pressure of the air surrounding us and changes from day to day
 b. The standard atmosphere is a constant reference atmosphere equal to 1.000 atm or the equivalent pressure in other units.
 c. Absolute pressure is measured relative to a vacuum.
 d. Gauge pressure is measured upward relative to atmospheric pressure.
 e. Vacuum and draft pressures are measured downward from atmospheric pressure.
 f. You can convert from one type of pressure measurement to another using the standard atmosphere.
 g. A manometer measures the pressure difference in terms of the height of fluid (s) in the manometer tube.

3. What is the equation to convert gauge pressure to absolute pressure?
 4. What are the values and units of the standard atmosphere for six different methods of expressing pressure?
 5. What is the equation to convert vacuum pressure to absolute pressure?

Answers:
1. 3 is the highest pressure; next are 1 and 2, which are the same; and 4 is last. The decisions are made by dividing the weight of water by the base area.
2. All are true
3. Gauge pressure + barometric pressure = absolute pressure
4. See lectures
5. Barometric pressure - vacuum pressure = absolute pressure

Problems
1. Convert a pressure of 800 mm Hg to the following units:
 a. psia b. kPa c. atm d. ft H₂O
2. Your textbook lists five types of pressures: atmospheric pressure, barometric pressure, gauge pressure, absolute pressure, and vacuum pressure.
 a. What kind of pressure is measured by the device in Figure SAT5.2P2A?
b. What kind of pressure is measured by the device in Figure SAT5.2P2B?

c. What would be the reading in Figure SAT5.2P2C assuming that the pressure and temperature inside and outside the helium tank are the same as in parts (a) and (b)?

3. An evaporator shows a reading of 40 kPa vacuum. What is the absolute pressure in the evaporator in kPa?

4. A U-tube manometer filled with mercury is connected between two points in a pipeline. If the manometer reading is 26 mm of Hg, calculate the pressure difference in kPa between the points when (a) water is flowing through the pipeline, and (b) also when air at atmospheric pressure and 20°C with a density of 1.20 kg/m3 is flowing in the pipeline.

5. A Bourdon gauge and a mercury manometer are connected to a tank of gas, as shown in Figure SAT5.3P2. If the reading on the pressure gauge is 85 kPa, what is h in centimeters of Hg?

Answers:

1. (a) 15.5; (b) 106.6; (c) 1.052; (d) 35.6
2. (A) Gauge pressure; (B) barometric pressure, absolute pressure; (C) 50 in. Hg
3. In the absence of a barometric pressure value, assume 101.3 kPa. The absolute pressure is 61.3 kPa.
4. The Hg is static. (a) 3.21 kPa; (b) 3.47 kPa
5. 63.8 cm Hg.
Chapter Two
Material Balances

2.1 Introduction to Material Balances

A **material balance** is nothing more than the application of the law of the **conservation of mass**: “Matter is neither created nor destroyed”

Open and Closed Systems

a. **System**

 By **system** we mean any arbitrary portion of or a whole **process** that you want to consider for analysis. You can define a **system** such as a **reactor**, a **section of a pipe**. Or, you can define the **limits** of the **system** by drawing the **system boundary**, namely a line that encloses the portion of the process that you want to analyze.

b. **Closed System**

 Figure 1 shows a two-dimensional view of a three-dimensional vessel holding **1000 kg of H₂O**. Note that **material neither enters nor leaves the vessel**, that is, **no material crosses the system boundary**. Changes can take place inside the **system**, but for a **closed system**, no mass exchange occurs with the surroundings.

![Figure 1 Closed system.](Image)

C. **Open System**

 Figure 2 is an example of an **open system** (also called a **flow system**) because material crosses the system boundary.

![Figure 2 Open steady – state system.](Image)
Steady-State and Unsteady-State Systems

a. Steady – State System

Because the rate of addition of water is equal to the rate of removal, the amount of water in the vessel shown in Figure 2 remains constant at its original value (1000 kg). We call such a process or system a steady – state process or a steady – state system because

1. The conditions inside the process (specifically the amount of water in the vessel in Figure 2) remain unchanged with time, and
2. The conditions of the flowing streams remain constant with time.

Thus, in a steady-state process, by definition all of the conditions in the process (e.g., temperature, pressure, mass of material, flow rate, etc.) remain constant with time. A continuous process is one in which material enters and/or leaves the system without interruption.

b. Unsteady – State System

Because the amount of water in the system changes with time (Figure 3), the process and system are deemed to be an unsteady – state (transient) process.

For an unsteady-state process, not all of the conditions in the process (e.g., temperature, pressure, mass of material, etc.) remain constant with time, and/or the flows in and out of the system can vary with time.

Figure 3 Initial conditions for an open unsteady – state system with accumulation.

Figure 4 The condition of the open unsteady – state system with accumulation after 50 minutes.
Figures 5 and 6 demonstrate negative accumulation.
Note that the amount of water in the system decreases with time at the rate of 10 kg/min. Figure 6.6 shows the system after 50 minutes of operation.

Figure 5 Initial conditions for an unsteady – state process with negative accumulation.

Figure 6 Condition of the open unsteady – state system with negative accumulation after 50 minutes.

The material balance for a single component process is

\[
\begin{align*}
\text{Accumulation of material within the system} & = \text{Total flow into the system} - \text{Total flow out of the system} \\
& \ldots 6.1
\end{align*}
\]

Equation 6.1 can apply to moles or any quantity that is conserved. As an example, look at Figure 6.7 in which we have converted all of the mass quantities in Figure 2 to their equivalent values in moles.
If the process is in the **steady state**, the **accumulation** term by definition is **zero**, and **Equation 6.1** simplifies to a famous truism

\[
\text{What goes in must come out} \quad (\text{In} = \text{Out}) \quad \cdots 6.2
\]

If you are analyzing an unsteady-state process, the accumulation term over a time interval can be calculated as

\[
\{\text{Accumulation}\} = \left\{\text{Final material in the system}\right\} - \left\{\text{Initial material in the system}\right\} \quad (6.3)
\]

The **times** you select for the final and initial conditions can be anything, but you usually select an **interval** such as 1 **minute** or 1 **hour** rather than specific times.

* When you combine **Equations 6.1 and 6.3** you get the **general material balance** for a component in the system in the **absence of reaction**

\[
\left\{\text{Final material in the system at } t_2\right\} - \left\{\text{Initial material in the system at } t_1\right\} = \left\{\text{Flow into the system from } t_1 \text{ to } t_2\right\} - \left\{\text{Flow out of the system from } t_1 \text{ to } t_2\right\} \quad \cdots 6.4
\]

Example 1

Will you save money if instead of buying premium 89 octane gasoline at $1.269 per gallon that has the octane you want, you blend sufficient 93 octane supreme gasoline at $1.349 per gallon with 87 octane regular gasoline at $1.149 per gallon?

Solution

Choose a **basis** of 1 gallon of 89 octane gasoline, the desired product. The system is the gasoline tank.

- For simplicity, assume that **no gasoline exists** in the tank at the start of the blending, and **one gallon exists** in the tank at the end of the blending.
- This arrangement corresponds to an **unsteady-state process**. Clearly it is an **open system**.

The **initial number of gallons** in the system is **zero** and the **final number of gallons** is **one**.
Let x = the number of gallons of 87 octane gasoline added, and y = the number of gallons of 93 octane added to the blend. Since $x + y = 1$ is the total flow into the tank,
\[\therefore y = 1 - x \]
According to Equation (6.4) the balance on the octane number is

\[
\begin{array}{c|c|c}
\text{Accumulation} & \text{Inputs} \\
\hline
87 \text{ octane} & 1 \text{ gal} & \text{0} &= 87 \text{ octane} & x \text{ gal} + 93 \text{ octane} & (1 - x) \text{ gal} \\
1 \text{ gal} & & & 1 \text{ gal} & & \\
\end{array}
\]

The solution is $x = 2/3 \text{ gal}$ and thus $y = 1 - x = 1/3 \text{ gal}$.

The cost of the blended gasoline is \((2/3) (\$1.149) + (1/3) (\$1.349) = \$1.216\)
A value less than the cost of the 89 octane gasoline (\$1.269).

Multiple Component Systems

Suppose the input to a vessel contains **more than one component**, such as 100 kg/min of a 50% water and 50% sugar (sucrose, $C_{12}H_{22}O_{11}$, MW = 342.3) mixture (see Figure 8). The mass balances with respect to the **sugar and water**, balances that we call **component balances**.

![Figure 8 An open system involving two components.](image)

For Example, look at the mixer shown in Figure 9, an apparatus that mixes two streams to increase the concentration of NaOH in a dilute solution. **The mixer is a steady – state open system.** Initially the mixer is empty, and after 1 hour it is empty again.

Basis = 1 hour for convenience. As an alternate to the **basis** we selected you could select $F_1 = 9000 \text{ kg/hr as the basis,}$
or $F_2 = 1000 \text{ kg/hr as the basis;}$ the **numbers** for this example would not change – just the **units** would change. Here are the components and total balances in **kg**:

<table>
<thead>
<tr>
<th>Flow in</th>
<th>Flow out</th>
<th>Accum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balances</td>
<td>F_1</td>
<td>F_2</td>
</tr>
<tr>
<td>NaOH</td>
<td>450</td>
<td>500</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>8,550</td>
<td>500</td>
</tr>
<tr>
<td>Total</td>
<td>9,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

We can convert the kg shown in Figure 6.9 to kg moles by dividing each compound by its respective molecular weight (NaOH = 40 and H$_2$O = 18).
Then the component and total balances in kg mol are:

<table>
<thead>
<tr>
<th></th>
<th>Flow in</th>
<th>Flow out</th>
<th>Accum.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_1</td>
<td>F_2</td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td>11.25</td>
<td>12.50</td>
<td>23.75</td>
</tr>
<tr>
<td>H_2O</td>
<td>475</td>
<td>27.78</td>
<td>502.78</td>
</tr>
<tr>
<td>Total</td>
<td>486.25</td>
<td>40.28</td>
<td>536.53</td>
</tr>
</tbody>
</table>

Figure 9 Mixing of a dilute stream of NaOH with a concentrated stream of NaOH. Values below the stream arrows are based on 1 hour of operation.

Example 2

Centrifuges are used to separate particles in the range of 0.1 to 100 µm in diameter from a liquid using centrifugal force. Yeast cells are recovered from a broth (a liquid mixture containing cells) using a tubular centrifuge (a cylindrical system rotating about a cylindrical axis). Determine the amount of the cell-free discharge per hour if 1000 L/hr is fed to the centrifuge, the feed contains 500 mg cells/L, and the product stream contains 50 wt.% cells. Assume that the feed has a density of 1 g/cm³.

Solution

This problem involves a steady state, open (flow) system without reaction.

Basis = 1 hour
Accounting for Chemical Reactions in Material Balances

Chemical reaction in a system requires the augmentation of Equation 6.4 to take into account the effects of the reaction. To illustrate this point, look at Figure 10, which shows a steady-state system in which HCl reacts with NaOH by the following reaction:

\[
\text{NaOH} + \text{HCl} \rightarrow \text{NaCl} + \text{H}_2\text{O}
\]

Equation 4 must be augmented to include terms for the generation and consumption of components by the chemical reaction in the system as follows:

\[
\begin{align*}
\text{Accumulation within the system} &= \text{Input through the system boundaries} - \text{Output through the system boundaries} + \text{Generation within the system} - \text{Consumption within the system} \\
\end{align*}
\]
Material Balances for Batch and Semi-Batch Processes

- A **batch process** is used to process a **fixed amount** of material each time it is operated. Initially, the material to be processed is charged into the system. After processing of the material is complete, the products are removed.

- Batch processes are used **industrially** for speciality processing applications (e.g., producing pharmaceutical products), which typically operate at relatively **low production rates**.

- Look at Figure 11a that illustrates what occurs at the start of a batch process, and after thorough mixing, the final solution remains in the system (Figure 11b).

![Figure 11a](image1)

Figure 11a The initial state of a batch mixing process.

- We can summarize the **hypothetical operation** of the **batch** as a flow system (open system) as follows (Figure 12):

 Final conditions: All values = 0
 - Flows out:
 - NaOH = 1,000 lb
 - H₂O = 9,000 lb
 - Total = 10,000 lb

 Initial conditions: All value = 0
 - Flows in:
 - NaOH = 1,000 lb
 - H₂O = 9,000 lb
 - Total 10,000 lb

![Figure 11b](image2)

Figure 11b The final state of a batch mixing process.

![Figure 12](image3)

Figure 12 The batch process in Figure 11 represented as an open system.
In a semi-batch process material enters the process during its operation, but does not leave. Instead mass is allowed to accumulate in the process vessel. Product is withdrawn only after the process is over.

A figure 13 illustrates a semi-batch mixing process. Initially the vessel is empty (Figure 13a). Figure 13b shows the semi-batch system after 1 hour of operation. Semi-batch processes are open and unsteady – state.

Only flows enter the systems, and none leave, hence the system is an unsteady state – one that you can treat as having continuous flows, as follows:

Final conditions: Flows out: All values = 0

- NaOH = 1,000 lb
- H₂O = 9,000 lb
- Total = 10,000 lb

Initial conditions: All values = 0 Total = 10,000 lb

Example 3

A measurement for water flushing of a steel tank originally containing motor oil showed that 0.15 percent by weight of the original contents remained on the interior tank surface. What is the fractional loss of oil before flushing with water, and the pounds of discharge of motor oil into the environment during of a 10,000 gal tank truck that carried motor oil? (The density of motor oil is about 0.80 g/cm³).

Solution

Basis: 10,000 gal motor oil at an assumed 77°F

The initial mass of the motor oil in the tank was

\[(10000 \text{ gal})(3.785 \text{ lit/1 gal})(1000 \text{ cm}^3/1 \text{ lit})(0.8 \text{ g/cm}^3)(1 \text{ lb/454 g}) = 66700 \text{ lb} \]

The mass fractional loss is **0.0015**. The oil material balance is

\[
\begin{align*}
\text{Initial unloaded residual discharged on cleaning} \\
66,700 &= 66,700 (0.9985) + 66,700 (0.0015)
\end{align*}
\]

Thus, the discharge on flushing is **66,700 (0.00 15) = 100 lb.**
Questions

1. Is it true that if no material crosses the boundary of a system, the system is a closed system?
2. Is mass conserved within an open process?
3. Can an accumulation be negative? What does a negative accumulation mean?
4. Under what circumstances can the accumulation term in the material balance be zero for a process?
5. Distinguish between a steady-state and an unsteady-state process.
6. What is a transient process? Is it different than an unsteady-state process?
7. Does Equation 6.4 apply to a system involving more than one component?
8. When a chemical plant or refinery uses various feeds and produces various products, does Equation 6.4 apply to each component in the plant?
9. What terms of the general material balance, Equation (6.5), can be deleted if
 a. The process is known to be a steady-state process.
 b. The process is carried out inside a closed vessel.
 c. The process does not involve a chemical reaction.
10. What is the difference between a batch process and a closed process?
11. What is the difference between a semi-batch process and a closed process?
12. What is the difference between a semi-batch process and an open process?

Answers:

1. Yes
2. Not necessarily – accumulation can occur
3. Yes; depletion
4. No reaction (a) closed system, or (b) flow of a component in and out are equal.
5. In an unsteady-state system, the state of the system changes with time, whereas with a steady-state system, it does not.
6. A transient process is an unsteady-state process.
7. Yes
8. Yes
9. (a) Accumulation; (b) flow in and out; (c) generation and consumption
10. None
11. A flow in occurs
12. None, except in a flow process, usually flows occur both in and out

Problems

1. Here is a report from a catalytic polymerization unit:

<table>
<thead>
<tr>
<th>Charge:</th>
<th>Pounds per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propanes and butanes</td>
<td>15,500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane and lighter</td>
<td>5,680</td>
</tr>
<tr>
<td>Butane</td>
<td>2,080</td>
</tr>
<tr>
<td>Polymer</td>
<td>missing</td>
</tr>
</tbody>
</table>

What is the production in pounds per hour of the polymer?
2. A plant discharges 4,000 gal/min of treated wastewater that contains 0.25 mg/L of PCB, (polychlorinated biphenyls) into a river that contains no measurable PCBs upstream of the discharge. If the river flow rate is 1,500 cubic feet per second, after the discharged water has thoroughly mixed with the river water, what is the concentration of PCBs in the river in mg/L?

Answers:
1. 7,740 lb/hr
2. 1.49×10^{-3} mg/L.

2.2 General Strategy for Solving Material Balance Problems

Problem Solving
An orderly method of analyzing problems and presenting their solutions represents training in logical thinking that is of considerably greater value than mere knowledge of how to solve a particular type of problem.

The Strategy for Solving Problems
1. Read and understand the problem statement.
2. Draw a sketch of the process and specify the system boundary.
3. Place labels for unknown variables and values for known variables on the sketch.
4. Obtain any missing needed data.
5. Choose a basis.
6. Determine the number of unknowns.
7. Determine the number of independent equations, and carry out a degree of freedom analysis.
8. Write down the equations to be solved.
9. Solve the equations and calculate the quantities asked for.
10. Check your answer.

Example 4
A thickener in a waste disposal unit of a plant removes water from wet sewage sludge as shown in Figure 10. How many kilograms of water leave the thickener per 100 kg of wet sludge that enter the thickener? The process is in the steady state.

Solution

Basis: 100 kg wet sludge

The system is the thickener (an open system). No accumulation, generation, or consumption occurs. The total mass balance is

$$\text{In} = \text{Out}$$

$$100 \text{ kg} = 70 \text{ kg} + \text{kg of water}$$

Consequently, the water amounts to 30 kg.
Example 5
A continuous mixer mixes NaOH with H₂O to produce an aqueous solution of NaOH. Determine the composition and flow rate of the product if the flow rate of NaOH is 1000 kg/hr, and the ratio of the flow rate of the H₂O to the product solution is 0.9. For this process,
1. Sketch of the process is required.
2. Place the known information on the diagram of the process.
3. What basis would you choose for the problem?
4. How many unknowns exist?
5. Determine the number of independent equations.
6. Write the equations to be solved.
7. Solve the equations.
8. Check your answer.

Solution
1. The process is an open one, and we assume it to be steady state.

![Diagram](Image)

2. Because no contrary information is provided about the composition of the H₂O and NaOH streams, we will assume that they are 100% H₂O and NaOH, respectively.

![Diagram](Image)

3. Basis (1000 kg or 1 hour or 1000 kg/hr) (all are equivalent)
4. We do not know the values of four variables: W, P, P_{NaOH} and P_{H2O}.
5. You can write three material balances:
 - one for the NaOH
 - one for the H₂O
 - one total balance (the sum of the two component balances)

Only two are independent.
Note: You can write as many independent material balances as there are species involved in the system.

6. Material balance: \(\text{in} = \text{out} \) or \(\text{in} - \text{out} = 0 \)

NaOH balance: \(1000 = P_{\text{NaOH}} \) or \(1000 - P_{\text{NaOH}} = 0 \) \(\text{(1)} \)

H₂O balance: \(W = P_{\text{H₂O}} \) or \(W - P_{\text{H₂O}} = 0 \) \(\text{(2)} \)

Given ratio: \(W = 0.9P \) or \(W - 0.9P = 0 \) \(\text{(3)} \)

Sum of components in \(P \): \(P_{\text{NaOH}} + P_{\text{H₂O}} = P \) or \(P_{\text{NaOH}} + P_{\text{H₂O}} - P = 0 \) \(\text{(4)} \)

Could you substitute the total mass balance \(1000 + W = P \) for one of the two component mass balances? Of course in fact, you could calculate \(P \) by solving just two equations:

Total balance: \(1000 + W = P \)

Given ratio: \(W = 0.9P \)

7. Solve equations:

\(W = 0.9P \) substitute in total balance \(1000 + 0.9P = P \)

\(\therefore P = 10000 \text{ kg} \) & \(W = 0.9 \times 10000 = 9000 \text{ kg} \) \(\text{(The basis is still 1 hr (F}_{\text{NaOH}} = 1000 \text{ kg)} \)

From these two values you can calculate the amount of H₂O and NaOH in the product

Then

\[\omega_{\text{NaOH}}^P = \frac{1000 \text{ kg NaOH}}{10,000 \text{ kg Total}} = 0.1 \]

\[\omega_{\text{H₂O}}^P = \frac{9,000 \text{ kg H₂O}}{10,000 \text{ kg Total}} = 0.9 \]

8. The total balance would have been a redundant balance, and could be used to check the answers

\(P_{\text{NaOH}} + P_{\text{H₂O}} = P \)

\(1,000 + 9,000 = 10,000 \)

Note: After solving a problem, use a redundant equation to check your values.

Degree of Freedom Analysis

The phrase degrees of freedom have evolved from the design of plants in which fewer independent equations than unknowns exist. The difference is called the degrees of freedom available to the designer to specify flow rates, equipment sizes, and so on. You calculate the number of degrees of freedom (\(N_D \)) as follows:

\[N_D = N_U - N_E \]

* When you calculate the number of degrees of freedom you ascertain the solve ability of a problem. Three outcomes exist:

<table>
<thead>
<tr>
<th>Case</th>
<th>(N_D)</th>
<th>Possibility of Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_U = N_E)</td>
<td>0</td>
<td>Exactly specified (determined); a solution exists</td>
</tr>
</tbody>
</table>
For the problem in **Example 6**,

\[
\begin{align*}
N_U &= 4 \\
N_E &= 4 \\
\end{align*}
\]

So that

\[
N_D = N_U - N_E = 4 - 4 = 0
\]

And a **unique** solution exists for the problem.

Example 7

A cylinder containing CH\(_4\), C\(_2\)H\(_6\), and N\(_2\) has to be prepared containing a CH\(_4\) to C\(_2\)H\(_6\) mole ratio of 1.5 to 1. Available to prepare the mixture is (1) a cylinder containing a mixture of 80% N\(_2\) and 20% CH\(_4\), (2) a cylinder containing a mixture of 90% N\(_2\) and 10% C\(_2\)H\(_6\), and (3) a cylinder containing pure N\(_2\). What is the number of degrees of freedom, i.e., the number of independent specifications that must be made, so that you can determine the respective contributions from each cylinder to get the desired composition in the cylinder with the three components?

Solution

A sketch of the process greatly helps in the analysis of the degrees of freedom. Look at Figure 11.

Do you count **seven unknowns** — three values of \(x_i\) and **four** values of \(F_i\)? How many independent equations can be written?

- Three material balances: CH\(_4\), C\(_2\)H\(_6\), and N\(_2\)
- One specified ratio: moles of CH\(_4\) to C\(_2\)H\(_6\) equal 1.5 or \((X_{CH4}/X_{C2H6}) = 1.5\)
- One summation of mole fractions: \(\sum x_i^{F_4} = 1\)

Thus, there are **seven minus five equals two degrees of freedom** \((N_D = N_U - N_E = 7 - 5 = 2)\). If you pick a basis, such as \(F_4 = 1\), one other value has to be specified to solve the problem to calculate composition of \(F_4\).

Example 8

In the growth of biomass CH\(_{1.8}\)O\(_{0.5}\)N\(_{0.16}\)S\(_{0.0045}\)P\(_{0.0055}\), with the system comprised of the biomass and the substrate, the substrate contains the carbon source for growth, C\(_6\)H\(_7\)O\(_y\), plus NH\(_3\), O\(_2\), H\(_2\)O, CO\(_2\), H\(_3\)PO\(_4\), and H\(_2\)SO\(_4\). The relations between the elements and the compounds in the system are:
How many degrees of freedom exist for this system (assuming that the values of \(\alpha \), \(\beta \), and \(\gamma \) are specified)?

Solution

Based on the given data, six element balances exist for the 8 species present, hence the system has two degrees of freedom.

Questions

1. What does the concept “solution of a material balance problem” mean?
2. (a) How many values of unknown variables can you compute from one independent material balance?
 (b) From three independent material balance equations?
 (c) From four material balances, three of which are independent?
3. If you want to solve a set of independent equations that contain fewer unknown variables than equations (the over specified problem), how should you proceed with the solution?
4. What is the major category of implicit constraints (equations) you encounter in material balance problems?
5. If you want to solve a set of independent equations that contain more unknown variable than equations (the underspecified problem), what must you do to proceed with the solution?

Answers:

1. A solution means a (possibly unique) set of values for the unknowns in a problem that satisfies the equations formulated in the problem.
2. (a) one; (b) three; (c) three.
3. Delete nonpertinent equations, or find additional variables not included in the analysis.
4. The sum of the mass or mole fraction in a stream or inside a system is unity.
5. Obtain more equations or specifications, or delete variables of negligible importance.

Problems

1. A water solution containing 10% acetic acid is added to a water solution containing 30% acetic acid flowing at the rate of 20 kg/min. The product P of the combination leaves the rate of 100 kg/min. What is the composition of P? For this process,
 a. Determine how many independent balances can be written.
 b. List the names of the balances.
 c. Determine how many unknown variables can be solved for.
 d. List their names and symbols.
 e. Determine the composition of P.
2. Can you solve these three material balances for F, D, and P? Explain why not.
3. How many values of the concentrations and flow rates in the process shown in Figure SAT7.2P3 are unknown? List them. The streams contain two components, 1 and 2.

\[
\begin{align*}
0.1F + 0.3D &= 0.2P \\
0.9F + 0.7D &= 0.8P \\
F + D &= P
\end{align*}
\]

![Figure SAT7.2P3](image)

4. How many material balances are needed to solve problem 3? Is the number the same as the number of unknown variables? Explain.

Answers:

1. (a) Two; (b) two of these three: acetic acid, water, total; (c) two; (d) feed of the 10% solution (say F) and mass fraction \(\omega \) of the acetic acid in P; (e) 14% acetic acid and 86% water
2. Not for a unique solution because only two of the equations are independent.
3. F, D, P, \(\omega_{D2} \), \(\omega_{P1} \)
4. Three unknowns exist. Because only two independent material balances can be written for the problem, one value of F, D, or P must be specified to obtain a solution. Note that specifying values of \(\omega_{D2} \) or \(\omega_{P1} \) will not help.

2.3 Solving Material Balance Problems for Single Units without Reaction

The use of material balances in a process allows you (a) to calculate the values of the total flows and flows of species in the streams that enter and leave the plant equipment, and (b) to calculate the change of conditions inside the equipment.

Example 9

Determine the mass fraction of Streptomycin in the exit organic solvent assuming that no water exits with the solvent and no solvent exits with the aqueous solution. Assume that the density of the aqueous solution is 1 g/cm\(^3\) and the density of the organic solvent is 0.6 g/cm\(^3\). Figure E8.1 shows the overall process.

Solution

This is an open (flow), steady-state process without reaction. Assume because of the low concentration of Strep. in the aqueous and organic fluids that the flow rates of the entering fluids equal the flow rates of the exit fluids.
Basis: 1 min

Basis: Feed = 200 L (flow of aqueous entering aqueous solution)
- Flow of exiting aqueous solution (same as existing flow)
- Flow of exiting organic solution (same as existing flow)

The material balances are in = out in grams. Let x be the g of Strep per L of solvent S.

Strep. balance:

\[
\begin{align*}
\frac{200 \text{L of A}}{1 \text{L of A}} \cdot 10 \text{g Strep} + \frac{10 \text{L of S}}{1 \text{L of S}} \cdot 0 \text{g Strep} &= \frac{200 \text{L of A}}{1 \text{L of A}} \cdot 0.2 \text{g Strep} + \frac{10 \text{L of S}}{1 \text{L of S}} \cdot x \text{g Strep} \\
x &= 196 \text{ g Strep/L of solvent}
\end{align*}
\]

To get the g Strep/g solvent, use the density of the solvent:

\[
\frac{196 \text{ g Strep}}{1 \text{L of S}} \cdot \frac{1 \text{L of S}}{1000 \text{cm}^3} \cdot \frac{1 \text{cm}^3 \text{ of S}}{0.6 \text{ g of S}} = 0.3267 \text{ g Strep/g of S}
\]

The mass fraction Strep = \(\frac{0.3267}{1 + 0.3267} = 0.246\)

Example 10

Membranes represent a relatively new technology for the separation of gases. One use that has attracted attention is the separation of nitrogen and oxygen from air. Figure E8.2a illustrates a nanoporous membrane that is made by coating a very thin layer of polymer on a porous graphite supporting layer. What is the composition of the waste stream if the waste stream amounts to 80% of the input stream?
Solution

This is an open, steady-state process without chemical reaction.

![Diagram of mass balance](image)

Basis: $100 \text{ g mol} = F$

Basis: $F = 100$

Specifications:

- $n_{O_2}^F = 0.21(100) = 21$
- $n_{N_2}^F = 0.79(100) = 79$
- $y_{O_2}^P = n_{O_2}^P / P = 0.25$
- $n_{O_2}^P = 0.25P$
- $y_{N_2}^P = n_{N_2}^P / P = 0.75$
- $n_{N_2}^P = 0.75P$
- $W = 0.80(100) = 80$

Material balances: O_2 and N_2

Implicit equations: $\Sigma n_i^W = W$ or $\Sigma y_i^W = 1$

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2: 0.21 (100)</td>
<td>0.25P + $y_{O_2}^W$ (80) or 0.21 (100)</td>
<td>0.25P + $n_{O_2}^W$</td>
<td></td>
</tr>
<tr>
<td>N_2: 0.79 (100)</td>
<td>0.75P + $y_{N_2}^W$ (80) or 0.79 (100)</td>
<td>0.75P + $n_{N_2}^W$</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.80</td>
<td>0.80</td>
<td></td>
</tr>
</tbody>
</table>

The solution of these equations is

$n_{O_2}^W = 16$ and $n_{N_2}^W = 64$, or $y_{O_2}^W = 0.20$ and $y_{N_2}^W = 0.80$, and $P = 20 \text{ g mol}$.

Check: total balance $100 = 20 + 80$ OK

Another method for solution

The overall balance is easy to solve because

$F = P + W$ or $100 = P + 80$

Gives $P = 20$ straight off. Then, the oxygen balance would be

$0.21(100) = 0.25(20) + n_{O_2}^W$

$n_{O_2}^W = 16 \text{ g mol}$, and $n_{O_2}^W = 80 - 16 = 64 \text{ g mol}$.

Note (Example 10)

$n_{O_2}^F + n_{N_2}^F = F$ is a redundant equation because it repeats some of the specifications.
Also, $n_D^P + n_W^P = P$ is redundant. Divide the equation by P to get $y_D^P + y_W^P = 1$, a relation that is equivalent to the sum of two of the specifications.

Example 11

A novice manufacturer of ethyl alcohol (denoted as EtOH) for gasohol is having a bit of difficulty with a distillation column. The process is shown in Figure E8.3. It appears that too much alcohol is lost in the bottoms (waste). Calculate the composition of the bottoms and the mass of the alcohol lost in the bottoms based on the data shown in Figure E8.3 that was collected during 1 hour of operation.

Solution

The process is an open system, and we assume it is in the steady state. No reaction occurs.

![Figure E8.3](image)

Basis: 1 hour so that $F = 1000$ kg of feed

We are given that P is $(1/10)$ of F, so that $P = 0.1(1000) = 100$ kg

Basis: $F= 1000$ kg

Specifications:

- $m_{\text{EtOH}}^F = 1000(0.10) = 100$
- $m_{\text{H}_2\text{O}}^F = 1000(0.90) = 900$
- $m_{\text{EtOH}}^P = 0.60P$
- $m_{\text{H}_2\text{O}}^P = 0.40P$

$P = (0.1) (F) = 100$ kg

Material balances: EtOH and H$_2$O

Implicit equations: $\sum m_i^B = B$ or $\sum \omega_i^B = 1$

The total mass balance: $F = P + B$

$B = 1000 - 100 = 900$ kg

The solution for the composition of the bottoms can then be computed directly from the material balances:
As a check let’s use the redundant equation

\[m_{\text{EtOH}}^B + m_{\text{H}_2\text{O}}^B = B \quad \text{or} \quad \omega_{\text{EtOH}}^B + \omega_{\text{H}_2\text{O}}^B = 1 \]

\[40 + 860 = 900 = B \]

Example 12

You are asked to prepare a batch of 18.63% battery acid as follows. A tank of old weak battery acid (H\textsubscript{2}SO\textsubscript{4}) solution contains 12.43% H\textsubscript{2}SO\textsubscript{4} (the remainder is pure water). If 200 kg of 77.7% H\textsubscript{2}SO\textsubscript{4} is added to the tank, and the final solution is to be 18.63% H\textsubscript{2}SO\textsubscript{4}, how many kilograms of battery acid have been made? See Figure E8.4.

Solution

1. An unsteady-state process (the tank initially contains sulfuric acid solution).

\[\text{Accumulation} = \text{In} - \text{Out} \]

2. Steady-state process (the tank as initially being empty)

\[\text{In} = \text{Out} \quad (\text{Because no accumulation occurs in the tank}) \]

1) Solve the problem with the mixing treated as an unsteady-state process.

Basis = 200 kg of A

Material balances: H\textsubscript{2}SO\textsubscript{4} and H\textsubscript{2}O

The balances will be in kilograms.

<table>
<thead>
<tr>
<th>Type of Balance</th>
<th>Accumulation in Tank</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H\textsubscript{2}SO\textsubscript{4}</td>
<td>P(0.1863) - F(0.1243)</td>
<td>200(0.777)</td>
<td>- 0</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>P(0.8137) - F(0.8757)</td>
<td>200(0.223)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>P - F</td>
<td>200</td>
<td>- 0</td>
</tr>
</tbody>
</table>

Note that any pair of the three equations is independent. P = 2110 kg acid \& F = 1910 kg acid.
2) The problem could also be solved by considering the mixing to be a steady-state process.

<table>
<thead>
<tr>
<th></th>
<th>(A) in</th>
<th>(F) in</th>
<th>(P) out</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{SO}_4)</td>
<td>200(0.777)</td>
<td>+</td>
<td>F(0.1243)</td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>200(0.223)</td>
<td>+</td>
<td>F(0.8757)</td>
</tr>
<tr>
<td>Total</td>
<td>(A)</td>
<td>+</td>
<td>(F)</td>
</tr>
</tbody>
</table>

Note: You can see by inspection that these equations are no different than the first set of mass balances except for the arrangement and labels.

Example 13
In a given batch of fish cake that contains 80% water (the remainder is dry cake), 100 kg of water is removed, and it is found that the fish cake is then 40% water. Calculate the weight of the fish cake originally put into the dryer. Figure E8.5 is a diagram of the process.

Solution
This is a steady-state process without reaction.

Basis: 100 kg of water evaporated = \(W \)

\[
\begin{align*}
\text{Total balance:} & \quad A = B + W = B + 100 \\
\text{BDC balance:} & \quad 0.20A = 0.60B
\end{align*}
\]

A = 150 kg initial cake and B = (150)(0.20/0.60) = 50 kg

Check via the water balance: \(0.80 \times 150 = 0.40 \times 50 + 100 \)

\(120 = 120 \)

Note
In Example 8.5 the BDC in the wet and dry fish cake is known as a tie component because the BDC goes from a single stream in the process to another single stream without loss, addition, or splitting.

Example 14
A tank holds 10,000 kg of a saturated solution of \(\text{Na}_2\text{CO}_3 \) at 30°C. You want to crystallize from this solution 3000 kg of \(\text{Na}_2\text{CO}_3 \cdot 10 \text{H}_2\text{O} \) without any accompanying water. To what temperature must the solution be cooled? You definitely need solubility data for \(\text{Na}_2\text{CO}_3 \) as a function of the temperature:
Solution

No reaction occurs. Although the problem could be set up as a steady-state problem with flows in and out of the system (the tank), it is equally justified to treat the process as an unsteady-state process.

Because the initial solution is saturated at 30°C, you can calculate the composition of the initial solution:

\[
\frac{38.8 \text{ g } \text{Na}_2\text{CO}_3}{38.8 \text{ g } \text{Na}_2\text{CO}_3 + 100 \text{ g } \text{H}_2\text{O}} = 0.280 \text{ mass fraction Na}_2\text{CO}_3
\]

Next, you should calculate the composition of the crystals.

Basis: 1 g mol Na$_2$CO$_3$·10 H$_2$O

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Mol</th>
<th>Mol wt.</th>
<th>Mass</th>
<th>Mass fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$CO$_3$</td>
<td>1</td>
<td>106</td>
<td>106</td>
<td>0.371</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>10</td>
<td>18</td>
<td>180</td>
<td>0.629</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>286</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Basis: 10,000 kg of saturated solution at 30°C

<table>
<thead>
<tr>
<th>Initial State</th>
<th>Final State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000 kg</td>
<td>F = ? kg</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>m$_{Na}_2$CO$_3$</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>m$_{H}_2$O</td>
</tr>
<tr>
<td>3000 kg</td>
<td>Crystals removed</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>0.371</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>0.629</td>
</tr>
</tbody>
</table>
An unsteady-state problem, the mass balance reduces to (the flow in = 0)

\[\text{Accumulation} = \text{In} - \text{Out} \]

Basis: \(I = 10,000 \text{ kg} \)

Material balances: \(\text{Na}_2\text{CO}_3, \text{H}_2\text{O} \)

\[
\omega_i^I I = m_i^I, \quad \omega_i^F F = m_i^F, \quad \text{and} \quad \omega_i^C C = m_i^C
\]

Note that \(\Sigma \omega_i = 1 \) and \(\Sigma m_i = m_{\text{total}} \).

M.B.:

Accumulation in Tank

<table>
<thead>
<tr>
<th>Component</th>
<th>Final</th>
<th>Initial</th>
<th>Transport out</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\text{Na}_2\text{CO}_3}^F)</td>
<td></td>
<td>10,000(0.280)</td>
<td>= −3000(0.371)</td>
</tr>
<tr>
<td>(m_{\text{H}_2\text{O}}^F)</td>
<td></td>
<td>10,000(0.720)</td>
<td>= −3000(0.629)</td>
</tr>
<tr>
<td>Total</td>
<td>(F)</td>
<td>−10,000</td>
<td>= −3000</td>
</tr>
</tbody>
</table>

The solution for the composition and amount of the final solution is

<table>
<thead>
<tr>
<th>Component</th>
<th>(\text{kg})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\text{Na}_2\text{CO}_3}^F)</td>
<td>1687</td>
</tr>
<tr>
<td>(m_{\text{H}_2\text{O}}^F)</td>
<td>5313</td>
</tr>
</tbody>
</table>

\(F \) (total) 7000

Check using the total balance: \(7,000 + 3,000 = 10,000 \)

To find the temperature of the final solution,

\[
\frac{1,687 \text{ kg Na}_2\text{CO}_3}{5,313 \text{ kg H}_2\text{O}} = \frac{31.8 \text{ g Na}_2\text{CO}_3}{100 \text{ g H}_2\text{O}}
\]

Thus, the temperature to which the solution must be cooled lies between \(20^\circ \text{C} \) and \(30^\circ \text{C} \). By linear interpolation

\[
30^\circ \text{C} - \frac{38.8 - 31.8}{38.8 - 21.5} \quad (10.0^\circ \text{C}) = 26^\circ \text{C}
\]

Example 14

This example focuses on the plasma components of the streams: water, uric acid (UR), creatinine (CR), urea (U), P, K, and Na. You can ignore the initial filling of the dialyzer because the treatment lasts for an interval of two or three hours. Given the measurements obtained from one treatment shown in Figure E8.7b, calculate the grams per liter of each component of the plasma in the outlet solution.

Solution

This is an open steady-state system. **Basis: 1 minute**
• The entering solution is assumed to be essentially water.

The water balance in grams, assuming that 1 mL is equivalent to 1 gram, is:

\[1100 + 1700 = 1200 + S_{\text{water}}^{\text{out}} \quad \text{hence:} \quad S_{\text{water}}^{\text{out}} = 1600 \text{ mL} \]

The component balances in grams are:

\[
\begin{align*}
\text{UR:} & \quad 1.1(1.16) + 0 = 1.2(0.060) + 1.6 S_{\text{UR}}^{\text{out}} & S_{\text{UR}}^{\text{out}} &= 0.75 \\
\text{CR:} & \quad 1.1(2.72) + 0 = 1.2(0.120) + 1.6 S_{\text{CR}}^{\text{out}} & S_{\text{CR}}^{\text{out}} &= 1.78 \\
\text{U:} & \quad 1.1(18) + 0 = 1.2(1.51) + 1.6 S_{\text{U}}^{\text{out}} & S_{\text{U}}^{\text{out}} &= 11.2 \\
\text{P:} & \quad 1.1(0.77) + 0 = 1.2(0.040) + 1.6 S_{\text{P}}^{\text{out}} & S_{\text{P}}^{\text{out}} &= 0.50 \\
\text{K:} & \quad 1.1(5.77) + 0 = 1.2(0.120) + 16 S_{\text{K}}^{\text{out}} & S_{\text{K}}^{\text{out}} &= 3.8 \\
\text{Na:} & \quad 1.1(13.0) + 0 = 1.2(3.21) + 16 S_{\text{Na}}^{\text{out}} & S_{\text{Na}}^{\text{out}} &= 6.53
\end{align*}
\]

Questions

1. Answer the following questions true or false:
 a. The most difficult part of solving material balance problems is the collection and formulation of the data specifying the compositions of the streams into and out of the system, and of the material inside the system.
 b. All open processes involving two components with three streams involve zero degrees of freedom.
 c. An unsteady-state process problem can be analyzed and solved as a steady-state process problem.
 d. If a flow rate is given in kg/min, you should convert it to kg mol/min.

2. Under what circumstances do equations or specifications become redundant?

Answers:

1. (a) T; (b) F; (c) T; (d) F
2. When they are not independent.

Problems

1. A cellulose solution contains 5.2% cellulose by weight in water. How many kilograms of 1.2% solution are required to dilute 100 kg of the 5.2% solution to 4.2%?

2. A cereal product containing 55% water is made at the rate of 500 kg/hr. You need to dry the product so that it contains only 30% water. How much water has to be evaporated per hour?

3. If 100 g of Na$_2$SO$_4$ is dissolved in 200 g of H$_2$O and the solution is cooled until 100 g of Na$_2$SO$_4$
 .10H$_2$O crystallizes out; find (a) the composition of the remaining solution (the mother liquor) and (b) the grams of crystals recovered per 100 g of initial solution.

4. Salt in crude oil must be removed before the oil undergoes processing in a refinery. The crude oil is fed to a washing unit where freshwater fed to the unit mixes with the oil and dissolves a portion of the salt contained in the oil. The oil (containing some salt but no water), being less dense than the water, can be removed at the top of the washer. If the “spent” wash water contains 15% salt and the crude oil contains 5% salt, determine the concentration of salt in the “washed” oil product if the ratio of crud oil (with salt) to water used is 4:1.
2.4 The Chemical Reaction Equation and Stoichiometry

Stoichiometry

- The stoichiometric coefficients in the chemical reaction equation
 \[\text{C}_7\text{H}_{16} (l) + 11 \text{O}_2 (g) \rightarrow 7 \text{CO}_2 (g) + 8 \text{H}_2\text{O} (g) \]
 \(\text{C}_7\text{H}_{16}, 11 \text{ for } \text{O}_2 \text{ and so on).} \]
- Another way to use the chemical reaction equation is to indicate that 1 mole of CO\(_2\) is formed from each (1/7) mole of \(\text{C}_7\text{H}_{16} \), and 1 mole of \(\text{H}_2\text{O} \) is formed with each (7/8) mole of CO\(_2\). The latter ratios indicate the use of stoichiometric ratios in determining the relative proportions of products and reactants.

For example how many kg of CO\(_2\) will be produced as the product if 10 kg of \(\text{C}_7\text{H}_{16} \) react completely with the stoichiometric quantity of \(\text{O}_2 \)? On the basis of 10 kg of \(\text{C}_7\text{H}_{16} \),

\[
\begin{array}{cccc}
10 \text{ kg } \text{C}_7\text{H}_{16} & 1 \text{ kg mol } \text{C}_7\text{H}_{16} & 7 \text{ kg mol } \text{CO}_2 & 44.0 \text{ kg } \text{CO}_2 \\
100.1 \text{ kg } \text{C}_7\text{H}_{16} & 1 \text{ kg mol } \text{C}_7\text{H}_{16} & 1 \text{ kg mol } \text{C}_7\text{H}_{16} & \\
\end{array}
= 30.8 \text{ kg } \text{CO}_2
\]

Example 15

The primary energy source for cells is the aerobic catabolism (oxidation) of glucose (\(\text{C}_6\text{H}_{12}\text{O}_6 \), a sugar). The overall oxidation of glucose produces CO\(_2\) and H\(_2\)O by the following reaction

\[\text{C}_6\text{H}_{12}\text{O}_6 + a\text{O}_2 \rightarrow b\text{ CO}_2 + c\text{ H}_2\text{O} \]

Determine the values of a, b, and c that balance this chemical reaction equation.

Solution

Basis: The given reaction

By inspection, the carbon balance gives \(b = 6 \), the hydrogen balance gives \(c = 6 \), and an oxygen balance

\[6 + 2a = 6 \times 2 + 6 \]

Gives a = 6. Therefore, the balanced equation is

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \]

Example 16

In the combustion of heptane, CO\(_2\) is produced. Assume that you want to produce 500 kg of dry ice per hour, and that 50% of the CO\(_2\) can be converted into dry ice, as shown in Figure E9.2. How many kilograms of heptane must be burned per hour? (MW: CO\(_2\) = 44 and \(\text{C}_7\text{H}_{16} = 100.1 \))

![Figure E9.2](image)
Solution

The chemical equation is

\[C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O \]

Basis: 500 kg of dry ice (equivalent to 1 hr)

The calculation of the amount of \(C_7H_{16} \) can be made in one sequence:

\[
\begin{array}{c|c|c|c|c}
\text{500 kg dry ice} & \text{1 kg CO}_2 & \text{1 kg mol CO}_2 & \text{1 kg mol C}_7\text{H}_{16} & \text{100.1 kg C}_7\text{H}_{16} \\
\text{0.5 kg dry ice} & \text{44.0 kg CO}_2 & \text{7 kg mol CO}_2 & \text{1 kg mol C}_7\text{H}_{16} & = \text{325 kg C}_7\text{H}_{16}
\end{array}
\]

Example 17

A limestone analyses (weight %): \(\text{CaCO}_3 \) 92.89%, \(\text{MgCO}_3 \) 5.41% and Inert 1.70%

By heating the limestone you recover oxides known as lime.

(a) How many pounds of calcium oxide can be made from 1 ton of this limestone?

(b) How many pounds of \(\text{CO}_2 \) can be recovered per pound of limestone?

(c) How many pounds of limestone are needed to make 1 ton of lime?

Mol. Wt.: \(\text{CaCO}_3 \) (100.1) \(\text{MgCO}_3 \) (84.32) \(\text{CaO} \) (56.08) \(\text{MgO} \) (40.32) \(\text{CO}_2 \) (44.0)

Solution

![Chemical Equation Diagram]

Chemical Equation:

\[\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \]
\[\text{MgCO}_3 \rightarrow \text{MgO} + \text{CO}_2 \]

Basis: 100 lb of limestone

<table>
<thead>
<tr>
<th>Component</th>
<th>Limestone</th>
<th>Solid Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{lb} = \text{percent})</td>
<td>(\text{lb mol})</td>
</tr>
<tr>
<td>(\text{CaCO}_3)</td>
<td>92.89</td>
<td>0.9280</td>
</tr>
<tr>
<td>(\text{MgCO}_3)</td>
<td>5.41</td>
<td>0.0642</td>
</tr>
<tr>
<td>Inert</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>0.9920</td>
</tr>
</tbody>
</table>

The quantities listed under Products are calculated from the chemical equations. For example, for the last column:

\[\frac{92.89 \text{ lb \text{CaCO}_3}}{100.1 \text{ lb \text{CaCO}_3}} \cdot \frac{1 \text{ lb mol \text{CaO}}}{1 \text{ lb mol \text{CaCO}_3}} = \frac{56.08 \text{ lb \text{CaO}}}{1 \text{ lb mol \text{CaO}}} = 52.04 \text{ lb \text{CaO}} \]

\[\frac{5.41 \text{ lb \text{MgCO}_3}}{84.32 \text{ lb \text{MgCO}_3}} \cdot \frac{1 \text{ lb mol \text{MgO}}}{1 \text{ lb mol \text{MgCO}_3}} = \frac{40.32 \text{ lb \text{MgO}}}{1 \text{ lb mol \text{MgO}}} = 2.59 \text{ lb \text{MgO}} \]

The production of \(\text{CO}_2 \) is:

\(\text{0.9280 lb mol \text{CaO}} \) is equivalent to \(\text{0.9280 lb mol \text{CO}_2} \)

\(\text{0.0642 lb mol \text{MgO}} \) is equivalent to \(\text{0.0642 lb mol \text{CO}_2} \)

Total \(\text{lb mol \text{CO}_2} = 0.9280 + 0.0642 = 0.992 \text{ lb mol \text{CO}_2} \)
Alternately, you could have calculated the lb CO$_2$ from a total balance: \(100 - 56.33 = 44.67\).

Now, to calculate the quantities originally asked for:

(a) CaO produced = \(\frac{52.04 \text{ lb CaO}}{100 \text{ lb limestone}} \times \frac{2000 \text{ lb}}{1 \text{ ton}} = 1041 \text{ lb CaO/ton}\)

(b) CO$_2$ recovered = \(\frac{43.65 \text{ lb CO}_2}{100 \text{ lb limestone}} = 0.437 \text{ lb CO}_2/\text{lb limestone}\)

(c) Limestone required = \(\frac{100 \text{ lb limestone}}{56.33 \text{ lb lime}} \times \frac{2000 \text{ lb}}{1 \text{ ton}} = 3550 \text{ lb limestone/ton lime}\)

Terminology for Applications of Stoichiometry

Extent of Reaction

The extent of reaction, \(\xi\), is based on a particular stoichiometric equation, and denotes how much reaction occurs. The extent of reaction is defined as follows:

\[\xi = \frac{n_i - n_{io}}{v_i} \quad \ldots 9.1\]

Where:

- \(n_i\) = moles of species \(i\) present in the system after the reaction occurs
- \(n_{io}\) = moles of species \(i\) present in the system when the reaction starts
- \(v_i\) = coefficient for species \(i\) in the particular chemical reaction equation (moles of species \(i\) produced or consumed per moles reacting)
- \(\xi\) = extent of reaction (moles reacting)

- The coefficients of the products in a chemical reaction are assigned positive values and the reactants assigned negative values. Note that \((n_i - n_{io})\) is equal to the generation or consumption of component \(i\) by reaction.

Equation (9.1) can be rearranged to calculate the number of moles of component \(i\) from the value of the extent of reaction

\[n_i = n_{io} + \xi v_i \quad \ldots 9.2\]

Example 18

Determine the extent of reaction for the following chemical reaction \(N_2 + 3H_2 \rightarrow 2NH_3\) given the following analysis of feed and product:

<table>
<thead>
<tr>
<th></th>
<th>(N_2)</th>
<th>(H_2)</th>
<th>(NH_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>100 g</td>
<td>50 g</td>
<td>5 g</td>
</tr>
<tr>
<td>Product</td>
<td>90 g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also, determine the g and g mol of \(N_2\) and \(H_2\) in the product.

Solution

The extent of reaction can be calculated by applying Equation 9.1 based on NH$_3$:
Equation 9.2 can be used to determine the g mol of \(N_2 \) and \(H_2 \) in the products of the reaction

\[
n_i = \frac{90 \text{ g NH}_3}{17 \text{ g NH}_3} = 5.294 \text{ g mol NH}_3
\]

\[
n_\theta = \frac{5 \text{ g NH}_3}{17 \text{ g NH}_3} = 0.294 \text{ g mol NH}_3
\]

\[
\xi = \frac{n_i - n_\theta}{v_i} = \frac{(5.294 - 0.204) \text{ g mol NH}_3}{2 \text{ g mol NH}_3/\text{moles reacting}} = 2.50 \text{ moles reacting}
\]

Note: If several independent reactions occur in the reactor, say \(k \) of them, \(\xi \) can be defined for each reaction, with \(v_{ki} \) being the stoichiometric coefficient of species \(i \) in the \(k \)th reaction, the total number of moles of species \(i \) is

\[
n_i = n_\theta + \sum_{k=1}^{R} v_{ki} \xi_k
\]

... 9.3

Where \(R \) is the total number of independent reactions.

Limiting and Excess Reactants

- The **excess material** comes out together with, or perhaps separately from, the product, and sometimes can be used again.

- The **limiting reactant** is the species in a chemical reaction that would theoretically run out first (would be completely consumed) if the reaction were to proceed to completion according to the chemical equation—**even if the reaction does not proceed to completion**! All the other reactants are called **excess reactants**.

\[
\% \text{ excess reactant} = \left(\frac{\text{amount of the excess reactant fed} - \text{amount of the excess reactant required to react with the limiting reactant}}{\text{amount of the excess reactant required to react with the limiting reactant}} \right) \times 100
\]

- **For example**, using the chemical reaction equation in **Example 9.2**,

\[
C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O
\]

If 1 g mol of \(C_7H_{16} \) and 12 g mol of \(O_2 \) are mixed.
As a straightforward way of determining the limiting reactant, you can determine the maximum extent of reaction, \(\xi^\text{max} \), for each reactant based on the complete reaction of the reactant. The reactant with the smallest maximum extent of reaction is the limiting reactant. For the example, for 1 g mol of \(\text{C}_7\text{H}_{16} \) plus 12 g mole of \(\text{O}_2 \), you calculate

\[
\xi^\text{max} \text{ (based on } \text{O}_2) = \frac{0 \text{ g mol } \text{O}_2 - 12 \text{ g mol } \text{O}_2}{-11 \text{ g mol } \text{O}_2/\text{moles reacting}} = 1.09 \text{ moles reacting}
\]

\[
\xi^\text{max} \text{ (based on } \text{C}_7\text{H}_{16}) = \frac{0 \text{ g mol } \text{C}_7\text{H}_{16} - 1 \text{ g mol } \text{C}_7\text{H}_{16}}{-1 \text{ g mol } \text{C}_7\text{H}_{16}/\text{moles reacting}} = 1.00 \text{ moles reacting}
\]

Therefore, \text{heptane} is the limiting reactant and \text{oxygen} is the excess reactant.

As an alternate to determining the limiting reactant, consider the following reaction

\[\text{A} + 3\text{B} + 2\text{C} \rightarrow \text{Products} \]

If the feed to the reactor contains 1.1 moles of \(\text{A} \), 3.2 moles of \(\text{B} \), and 2.4 moles of \(\text{C} \). The extents of reaction based on complete reaction of \(\text{A} \), \(\text{B} \), and \(\text{C} \) are

\[
\xi^\text{max} \text{ (based on } \text{A}) = \frac{-1.1 \text{ mol } \text{A}}{-1} = 1.1
\]

\[
\xi^\text{max} \text{ (based on } \text{B}) = \frac{-3.2 \text{ mol } \text{B}}{-3} = 1.07
\]

\[
\xi^\text{max} \text{ (based on } \text{C}) = \frac{-2.4 \text{ mol } \text{C}}{-2} = 1.2
\]

As a result, \(\text{B} \) is identified as the limiting reactant in this example while \(\text{A} \) and \(\text{C} \) are the excess reactants.

As an alternate to determining the limiting reactant for same example:

We choose \(\text{A} \) as the reference substance and calculate

\[
\text{Ratio in feed} \quad \text{Ratio in chemical equation}
\]

\[
\frac{\text{O}_2}{\text{C}_7\text{H}_{16}} : \frac{12}{1} = 12 > \frac{11}{1} = 11
\]

\[
\text{Ratio in feed} \quad \text{Ratio in chemical equation}
\]

\[
\frac{\text{B}}{\text{A}} : \frac{3.2}{1.1} = 2.91 < \frac{3}{1} = 3
\]

\[
\frac{\text{C}}{\text{A}} : \frac{2.4}{1.1} = 2.18 > \frac{2}{1} = 2
\]

We conclude that \(\text{B} \) is the limiting reactant relative to \(\text{A} \), and that \(\text{A} \) is the limiting reactant relative to \(\text{C} \), hence \(\text{B} \) is the limiting reactant among the set of three reactant. In symbols we have \(\text{B} < \text{A} < \text{C} \).

Example 19

If you feed 10 grams of \(\text{N}_2 \) gas and 10 grams of \(\text{H}_2 \) gas into a reactor:

a. What is the maximum number of grams of \(\text{NH}_3 \) that can be produced?

b. What is the limiting reactant?

c. What is the excess reactant?
Solution

Given:

\[\begin{align*}
\text{g} & : 10 & 10 & 0 \\
\text{MW} & : 28 & 2.016 & 17.02 \\
\text{Calculated} \ g \ \text{mol} & : 0.357 & 4.960 & 0 \\
\end{align*} \]

\(\xi_{\text{max}} \) (based on \(N_2 \)) = \frac{-0.357 \ \text{g mol} \ N_2}{-1 \ \text{g mol} \ N_2/\text{moles reacting}} = 0.357 \ \text{moles reacting}

\(\xi_{\text{max}} \) (based on \(H_2 \)) = \frac{-4.960 \ \text{g mol} \ H_2}{-3 \ \text{g mol} \ H_2/\text{moles reacting}} = 1.65 \ \text{moles reacting}

(b) \(N_2 \) is the limiting reactant, and that (c) \(H_2 \) is the excess reactant.

The excess \(H_2 = 4.960 - 3(0.357) = 3.89 \ \text{g mol} \). To answer question (a), the maximum amount of \(NH_3 \) that can be produced is based on assuming complete conversion of the limiting reactant

\[\frac{0.357 \ \text{g mol} \ N_2}{1 \ \text{g mol} \ N_2} \times \frac{2 \ \text{g mol} \ NH_3}{1 \ \text{g mol} \ N_2} = 12.2 \ \text{g NH}_3 \]

Conversion and degree of completion

Conversion is the fraction of the feed or some key material in the feed that is converted into products.

Conversion is related to the degree of completion of a reaction namely the percentage or fraction of the limiting reactant converted into products.

Thus, percent conversion is

\[\% \ \text{conversion} = \frac{\text{moles (or mass) of feed (or a compound in the feed) that react}}{\text{moles (or mass) of feed (or a component in the feed) introduced}} \times 100 \]

For example, for the reaction equation described in Example 16, if 14.4 kg of \(CO_2 \) are formed in the reaction of 10 kg of \(C_7H_{16} \), you can calculate what percent of the \(C_7H_{16} \) is converted to \(CO_2 \) (reacts) as follows:

\[\frac{\text{14.4 kg CO}_2}{\text{1 kg mol CO}_2} \times \frac{\text{1 kg mol C}_7\text{H}_{16}}{\text{44.0 kg CO}_2} = 0.0468 \ \text{kg mol C}_7\text{H}_{16} \]

\[\text{10 kg C}_7\text{H}_{16} \times \frac{1 \ \text{kg mol C}_7\text{H}_{16}}{100.1 \ \text{kg C}_7\text{H}_{16}} = 0.0999 \ \text{kg mol C}_7\text{H}_{16} \]

\[\% \ \text{conversion} = \frac{0.0468 \ \text{mol reacted}}{0.0999 \ \text{kg mol fed}} \times 100 = 46.8\% \ \text{of the C}_7\text{H}_{16} \]
The conversion can also be calculated using the extent of reaction as follows:

Conversion is equal to the extent of reaction based on CO₂ formation (i.e., the actual extent of reaction) divided by the extent of reaction assuming complete reaction of C₇H₁₆ (i.e., the maximum possible extent of reaction).

\[
\text{Conversion} = \frac{\text{extent of reaction that actually occurs}}{\text{extent of reaction that would occur if complete reaction took place}} = \frac{\xi}{\xi_{\text{max}}}
\]

Selectivity

Selectivity is the ratio of the moles of a particular (usually the desired) product produced to the moles of another (usually undesired or by-product) product produced in a set of reactions.

For example, methanol (CH₃OH) can be converted into ethylene (C₂H₄) or propylene (C₃H₆) by the reactions

\[
\begin{align*}
2 \text{CH}_3\text{OH} & \rightarrow \text{C}_2\text{H}_4 + 2\text{H}_2\text{O} \\
3 \text{CH}_3\text{OH} & \rightarrow \text{C}_3\text{H}_6 + 3\text{H}_2\text{O}
\end{align*}
\]

What is the selectivity of C₂H₄ relative to the C₃H₆ at 80% conversion of the CH₃OH? At 80% conversion: C₂H₄ 19 mole % and for C₃H₆ 8 mole %. Because the basis for both values is the same, the selectivity = 19/8 = \(2.4\) mol C₂H₄ per mol C₃H₆.

Yield

No universally agreed-upon definitions exist for yield—in fact, quite the contrary. Here are three common ones:

- **Yield (based on feed)**—the amount (mass or moles) of desired product obtained divided by the amount of the key (frequently the limiting) reactant fed.
- **Yield (based on reactant consumed)**—the amount (mass or moles) of desired product obtained divided by the amount of the key (frequently the limiting) reactant consumed.
- **Yield (based on theoretical consumption of the limiting reactant)**—the amount (mass or moles) of a product obtained divided by the theoretical (expected) amount of the product that would be obtained based on the limiting reactant in the chemical reaction equation if it were completely consumed.

Example 20

The following overall reaction to produce biomass, glycerol, and ethanol

\[
\begin{align*}
\text{C}_6\text{H}_{12}\text{O}_6(\text{glucose}) + 0.118 \text{NH}_3 & \rightarrow 0.59 \text{CH}_{1.74}\text{N}_{0.2}\text{O}_{0.45} (\text{biomass}) \\
& + 0.43 \text{C}_3\text{H}_6\text{O}_3(\text{glycerol}) + 1.54 \text{CO}_2 + 1.3 \text{C}_2\text{H}_5\text{OH} (\text{ethanol}) + 0.03 \text{H}_2\text{O}
\end{align*}
\]

Calculate the theoretical yield of biomass in g of biomass per g of glucose. Also, calculate the yield of ethanol in g of ethanol per g of glucose.

Solution

Basis: 0.59 g mol of biomass
Example 21

For this example, large amounts of single wall carbon nanotubes can be produced by the catalytic decomposition of ethane over Co and Fe catalysts supported on silica.

\[\text{C}_2\text{H}_6 \rightarrow 2 \text{C} + 3 \text{H}_2 \quad (a) \]
\[\triangledown \text{C}_2\text{H}_4 + \text{H}_2 \quad (b) \]

If you collect 3 g mol of H\(_2\) and 0.50 g mol of C\(_2\)H\(_4\), what is the selectivity of C relative to C\(_2\)H\(_4\)?

Solution

Basis: 3 g mol H\(_2\) by Reaction (a)

0.50 g mol C\(_2\)H\(_4\) by Reaction (b)

The 0.5 g mol of C\(_2\)H\(_4\) corresponds to 0.50 g mol of H\(_2\) produced in Reaction (b).

The H\(_2\) produced by Reaction (a) = 3 - 0.50 = 2.5 g mol.

The nanotubes (the C) produced by Reaction (a) = \((2/3)(2.5) = 1.67 \text{ g mol C}\)

The selectivity = \(1.67/0.50 = 3.33 \text{ g mol C/g mol C}_2\text{H}_4\)

Example 22

The two reactions of interest for this example are

\[\text{Cl}_2(g) + \text{C}_3\text{H}_6(g) \rightarrow \text{C}_3\text{H}_5\text{Cl}(g) + \text{HCl}(g) \quad (a) \]
\[\text{Cl}_2(g) + \text{C}_3\text{H}_6(g) \rightarrow \text{C}_3\text{H}_6\text{Cl}_2(g) \quad (b) \]

C\(_3\)H\(_6\) is propylene (propene) (MW = 42.08)

C\(_3\)H\(_5\)Cl is allyl chloride (3-chloropropene) (MW = 76.53)

C\(_3\)H\(_6\)Cl\(_2\) is propylene chloride (1,2—dichloropropene) (MW = 112.99)

The species recovered after the reaction takes place for some time are listed in Table E9.8.

<table>
<thead>
<tr>
<th>species</th>
<th>Cl(_2)</th>
<th>C(_3)H(_6)</th>
<th>C(_3)H(_5)Cl</th>
<th>C(_3)H(_6)Cl(_2)</th>
<th>HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>g mol</td>
<td>141</td>
<td>651</td>
<td>4.6</td>
<td>24.5</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Based on the product distribution assuming that no allyl chlorides were present in the feed, calculate the following:

a. How much Cl\(_2\) and C\(_3\)H\(_6\) were fed to the reactor in g mol?

b. What was the limiting reactant?

c. What was the excess reactant?

d. What was the fraction conversion of C\(_3\)H\(_6\) to C\(_3\)H\(_5\)Cl?

e. What was the selectivity of C\(_3\)H\(_5\)Cl relative to C\(_3\)H\(_6\)Cl\(_2\)?

f. What was the yield of C\(_3\)H\(_5\)Cl expressed in g of C\(_3\)H\(_5\)Cl to the g of C\(_3\)H\(_6\) fed to the reactor?

g. What was the extent of reaction of the first and second reactions?

Solution

Figure E9.8 illustrates the process as an open-flow system. A batch process could alternatively be used.
A convenient basis is what is given in the product list in Table E9.8.

Reaction (a)

\[
\frac{4.6 \text{ g mol } C_3H_7Cl}{1 \text{ g mol } Cl_2} = \frac{1 \text{ g mol } C_3H_5Cl}{1 \text{ g mol } Cl_2} = 4.6 \text{ g mol } Cl_2 \text{ reacts}
\]

Reaction (b)

\[
\frac{24.5 \text{ g mol } C_3H_6Cl_2}{1 \text{ g mol } Cl_2} = \frac{1 \text{ g mol } Cl_2}{1 \text{ g mol } C_3H_6Cl_2} = 24.5 \text{ g mol } Cl_2 \text{ reacts}
\]

Total = 4.6 + 24.5 = 29.1 g mol Cl₂ reacts

Cl₂ in product = 141.0 from Table E9.8

(a) Total Cl₂ fed = 141.0 + 29.1 = 170.1 g mol Cl₂

Total C₃H₆ fed = 651.0 + 29.1 = 680.1 g mol of C₃H₆

(b) and (c) Since both reactions involve the same value of the respective reaction stoichiometric coefficients, both reactions will have the same limiting and excess reactants

\[\xi_{max} \text{ (based on } C_3H_6) = \frac{-680.1 \text{ g mol } C_3H_6}{-1 \text{ g mol } C_3H_6/\text{moles reacting}} = 680.1 \text{ moles reacting}\]

\[\xi_{max} \text{ (based on } Cl_2) = \frac{-170.1 \text{ g mol } Cl_2}{-1 \text{ g mol } Cl_2/\text{moles reacting}} = 170.1 \text{ moles reacting}\]

Thus, C₃H₆ was the excess reactant and Cl₂ the limiting reactant.

(d) The fraction conversion of C₃H₆ to C₃H₅Cl was

\[\frac{4.6 \text{ g mol } C_3H_6 \text{ that reacted}}{680.1 \text{ g mol } C_3H_6 \text{ fed}} = 6.76 \times 10^{-3}\]

(e) The selectivity was

\[\frac{4.6 \text{ g mol } C_3H_5Cl}{24.5 \text{ g mol } C_3H_6Cl_2} = 0.19 \text{ g mol } C_3H_5Cl \text{ g mol } C_3H_6Cl_2\]

(f) The yield was

\[\frac{(76.53)(4.6) \text{ g } C_3H_5Cl}{(42.08)(680.1) \text{ g } C_3H_6} = 0.012 \text{ g } C_3H_5Cl \text{ g } C_3H_6\]

(g) Because C₃H₅Cl is produced only by the first reaction, the extent of reaction of the first reaction is

\[\xi_1 = \frac{n_i - n_{i0}}{v_i} = \frac{4.6 - 0}{1} = 4.6\]

Because C₃H₆C₁₂ is produced only by the second reaction, the extent of reaction of the second reaction is

\[\xi_2 = \frac{n_i - n_{i0}}{v_i} = \frac{24.5 - 0}{1} = 24.5\]
Example 23

Five pounds of bismuth (MW=209) is heated along with one pound of sulfur (MW=32) to form Bi₂S₃ (MW=514). At the end of the reaction, the mass is extracted and the free sulfur recovered is 5% of the reaction mass. Determine

\[2 \text{Bi} + 3 \text{S} \rightarrow \text{Bi}_2\text{S}_3 \]

1. The limiting reactant.
2. The percent excess reactant.
3. The percent conversion of sulfur to \(\text{Bi}_2\text{S}_3 \)

Solution

a. Find the limiting reactant

\[
\text{Ratio in the feed} = \frac{5.00 \text{ lb Bi}}{209 \text{ lb Bi}} \cdot \frac{1 \text{ lb mol Bi}}{1.00 \text{ lb S}} \cdot \frac{1 \text{ lb mol S}}{32 \text{ lb S}} = 0.0239 \text{ mol Bi} \quad 0.0313 \text{ mol S} = 0.774
\]

\[
\text{Ratio in the chemical equation} = \frac{2 \text{ lb mol Bi}}{3 \text{ lb mol S}} = 0.667
\]

Compare the two ratios; \text{S is the limiting reactant.}

b. \% Excess reactant

\[
\text{Bi required} = \frac{1 \text{ lb S}}{32 \text{ lb S}} \cdot \frac{1 \text{ lb mol S}}{2 \text{ mol Bi}} = 0.0208 \text{ lb mol Bi}
\]

\[
\% \text{ excess Bi} = \left(\frac{0.0239 - 0.028}{0.028} \right) \times 100 = 14.9 \%
\]

c. We will assume that no gaseous products are formed, so that the total mass of the reaction mixture is conserved at 6 lb (5 lb Bi + 1 lb S). The free sulfur at the end of the reaction = 5%.

\[
\text{6.00 lb rxn mass} \quad \text{5.00 lb S} \quad 1 \text{ lb mol S} = 0.00938 \text{ lb mol S}
\]

\[
\% \text{ Conversion} = \frac{\text{moles of feed that react}}{\text{moles of feed introduced}} \times 100
\]

\[
= \frac{0.0313 - 0.00938}{0.0313} \times 100 = 70.0 \%
\]

Questions

1. What is a limiting reactant?
2. What is an excess reactant?
3. How do you calculate the extent of reaction from experimental data?

Answers:

Q.3 Reactant present in the least stoichiometric quantity.
Q.4 All other reactants than the limiting reactant.
Q.5 For a species in

\[
\xi = \frac{n_{\text{out},i} - n_{\text{in},i}}{v_i} \quad \text{Closed system:} \quad \xi = \frac{n_{\text{final},i} - n_{\text{initial},i}}{v_i}
\]
Chemical Engineering principles - First Year

Dr. Anees A. Khadom

Problems

1. Write balanced reaction equations for the following reactions:
 a. \(\text{C}_9\text{H}_{18} \) and oxygen to form carbon dioxide and water.
 b. \(\text{FeS}_2 \) and oxygen to form \(\text{Fe}_2\text{O}_3 \) and sulfur dioxide.

2. If 1 kg of benzene (\(\text{C}_6\text{H}_6 \)) is oxidized with oxygen, how many kilograms of \(\text{O}_2 \) are needed to convert all the benzene to \(\text{CO}_2 \) and \(\text{H}_2\text{O} \)?

3. The electrolytic manufacture of chlorine gas from a sodium chloride solution is carried out by the following reaction:
 \[
 2 \text{NaCl} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH} + \text{H}_2 + \text{Cl}_2
 \]
 How many kilograms of \(\text{Cl}_2 \) can be produced from 10 m\(^3\) of brine solution containing 5% by weight of \(\text{NaCl} \)? The specific gravity of the solution relative to that of water at 4°C is 1.07.

4. Can you balance the following chemical reaction equation?
 \[
 a_1\text{NO}_3 + a_2\text{HClO} \rightarrow a_3\text{HNO}_3 + a_4\text{HCl}
 \]

5. For the reaction in which stoichiometric quantities of the reactants are fed
 \[
 2 \text{C}_5\text{H}_{10} + 15 \text{O}_2 \rightarrow 10 \text{CO}_2 + 10 \text{H}_2\text{O}
 \]
 and the reaction goes to completion, what is the maximum extent of reaction based on \(\text{C}_5\text{H}_{10} \)? On \(\text{O}_2 \)? Are the respective values different or the same? Explain the result.

6. Calcium oxide (\(\text{CaO} \)) is formed by decomposing limestone (pure \(\text{CaCO}_3 \)). In one kiln the reaction goes to 70% completion.
 a. What is the composition of the solid product withdrawn from the kiln?
 b. What is the yield in terms of pounds of \(\text{CO}_2 \) produced per pound of limestone fed into the process?

7. Aluminum sulfate can be made by reacting crushed bauxite ore with sulfuric acid, according to the following chemical equation:
 \[
 \text{Al}_2\text{O}_3 + 3 \text{H}_2\text{SO}_4 \rightarrow \text{Al}_2(\text{SO}_4)_3 + 3 \text{H}_2\text{O}
 \]
 The bauxite ore contains 55.4% by weight of aluminum oxide, the remainder being impurities. The sulfuric acid solution contains 77.7% pure sulfuric acid, the remainder being water. To produce crude aluminum sulfate containing 1798 lb of pure aluminum sulfate, 1080 lb of bauxite ore and 2510 lb of sulfuric acid solution are reacted.
 a. Identify the excess reactant.
 b. What percentage of the excess reactant was consumed?
 c. What was the degree of completion of the reaction?

8. Two well-known gas phase reactions take place in the dehydration of ethane:
 \[
 \text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_4 + \text{H}_2 \quad (i)
 \]
 \[
 \text{C}_2\text{H}_6 + \text{H}_2 \rightarrow 2 \text{CH}_4 \quad (ii)
 \]
Given the product distribution measured in the gas phase reaction of C\textsubscript{2}H\textsubscript{6} as follows

\[\text{C}_2\text{H}_6 \ 27\%, \ \text{C}_2\text{H}_4 \ 33\%, \ \text{H}_2 \ 13\%, \ \text{and} \ \text{CH}_4 \ 27\% \]

a. What species was the limiting reactant?
b. What species was the excess reactant?
c. What was the conversion of C\textsubscript{2}H\textsubscript{6} to CH\textsubscript{4}?
d. What was the degree of completion of the reaction?
e. What was the selectivity of C\textsubscript{2}H\textsubscript{4} relative to CH\textsubscript{4}?
f. What was the yield of C\textsubscript{2}H\textsubscript{4} expressed in kg mol of C\textsubscript{2}H\textsubscript{4} produced per kg mol of C\textsubscript{2}H\textsubscript{6}?
g. What was the extent of reaction of C\textsubscript{2}H\textsubscript{6}?

Answers:

1. (a) \[\text{C}_9\text{H}_{18} + \frac{27}{2} \text{O}_2 \rightarrow 9 \text{CO}_2 + 9 \text{H}_2\text{O}; \]
 \[4 \text{FeS}_2 + 11 \text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8 \text{SO}_2 \]
2. 3.08
3. 323
4. No
5. (a) 1,
 (b) 1,
 (c) The same,
 (d) The extent of reaction depends on the reaction equation as a whole and not on one species in the equation.
6. CaCO\textsubscript{3}: 43.4\%, CaO: 56.4\%; (b) 0.308
7. (a) H\textsubscript{2}SO\textsubscript{4}
 (b) 79.2\%
 (c) 0.89
8. (a) C\textsubscript{2}H\textsubscript{6} (the hydrogen is from reaction No.2, not the feed);
 (b) None;
 (c) Fraction conversion = 0.184;
 (d) 0.45;
 (e) 1.22
 (f) Based on reactant in the feed: 0.45, based on reactant consumed: 0.84, based on theory: 0.50;
 (g) Reaction (a) is 33 mol reacting and reaction (b) is 13.5 mol reacting, both based on 100 mol product.

2.5 Material Balances for Processes Involving Reaction

Species Material Balances

Processes Involving a Single Reaction

The material balance for a species must be augmented to include generation and consumption terms when chemical reactions occur in a process.

\[\text{moles of } i \text{ at } t_2 \text{ in the system} = \text{moles of } i \text{ entering the system between } t_1 \text{ and } t_2 - \text{moles of } i \text{ leaving the system between } t_1 \text{ and } t_2 + \text{moles of } i \text{ generated by reaction between } t_2 \text{ and } t_1 - \text{moles of } i \text{ consumed by reaction between } t_2 \text{ and } t_1 \] \hspace{1cm} (1)
Note that we have written Equation (1) in moles rather than mass because the generation and consumption terms are more conveniently represented in moles.

For example: Figure 10.1 presents the process as an open, steady-state system operating for 1 min so that the accumulation terms are zero. The data in Figure 10.1 are in g mol. Using Equation 10.1 you can calculate via a value in g mol for the generation or consumption, as the case may be, for each of the three species involved in the reaction:

\[
\begin{align*}
\text{NH}_3 \text{ (generation): } & \quad 6 - 0 = 6 \text{ gmol} \\
\text{H}_2 \text{ (consumption): } & \quad 9 - 18 = -9 \text{ gmol} \\
\text{N}_2 \text{ (consumption): } & \quad 12 - 15 = -3 \text{ gmol}
\end{align*}
\]

Here is where the extent of reaction \(\xi \) becomes useful. Recall that for an open system

\[
\xi = \frac{n_{i}^{\text{out}} - n_{i}^{\text{in}}}{v_{i}} \quad i = 1, \ldots, N \quad (10.3)
\]

Where \(v_{i} \) is the stoichiometric coefficient of species \(i \) in the reaction equation

\[
\begin{align*}
v_{\text{NH}_3} &= 2 \\
v_{\text{H}_2} &= -3 \\
v_{\text{N}_2} &= -1
\end{align*}
\]

And the extent of reaction can be calculated via any species:

\[
\begin{align*}
\xi_{\text{NH}_3} &= \frac{n_{\text{NH}_3}^{\text{out}} - n_{\text{NH}_3}^{\text{in}}}{v_{\text{NH}_3}} = \frac{6 - 0}{2} = 3 \\
\xi_{\text{H}_2} &= \frac{n_{\text{H}_2}^{\text{out}} - n_{\text{H}_2}^{\text{in}}}{v_{\text{H}_2}} = \frac{9 - 18}{-3} = 3 \\
\xi_{\text{N}_2} &= \frac{n_{\text{N}_2}^{\text{out}} - n_{\text{N}_2}^{\text{in}}}{v_{\text{N}_2}} = \frac{12 - 15}{-1} = 3
\end{align*}
\]

The three species balances corresponding to the process in Figure 10.1 are

<table>
<thead>
<tr>
<th>Component</th>
<th>Out</th>
<th>In</th>
<th>Generation or Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_3)</td>
<td>6</td>
<td>-0</td>
<td>2 (3) = 6</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>9</td>
<td>-18</td>
<td>-3 (3) = -9</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>12</td>
<td>-15</td>
<td>-1 (3) = -3</td>
</tr>
</tbody>
</table>

The term \(v_{i} \xi \) corresponds to the moles of \(i \) generated or consumed.

- The value of the fraction conversion \(f \) of the limiting reactant; \(\xi \) is related to \(f \) by

\[
\xi = \frac{(-f) n_{\text{limiting reactant}}^{\text{in}}}{v_{\text{limiting reactant}}} \quad \ldots 10.3
\]
Consequently, you can calculate the value of ξ from the fraction conversion (or vice versa) plus information identifying the limiting reactant.

Example 24

The chlorination of methane occurs by the following reaction

$$\text{CH}_4 + \text{Cl}_2 \rightarrow \text{CH}_3\text{Cl} + \text{HCl}$$

You are asked to determine the product composition if the conversion of the limiting reactant is 67%, and the feed composition in mole % is given as: 40% CH$_4$, 50% Cl$_2$, and 10% N$_2$.

Solution

Assume the reactor is an open, steady-state process.

![Diagram of reactor with 67% conversion]

Basis 100 g mol feed

Limiting reactant:

$$\xi_{\text{max}}(\text{CH}_4) = \frac{-n_{\text{in}}^{\text{mol}}}{v_{\text{CH}_4}} = -\frac{40}{(-1)} = 40$$

$$\xi_{\text{max}}(\text{Cl}_2) = \frac{-n_{\text{in}}^{\text{mol}}}{v_{\text{Cl}_2}} = -\frac{50}{(-1)} = 50$$

Therefore, CH$_4$ is the limiting reactant.

Calculate the extent of reaction using the specified conversion rate and Equation 10.3.

$$\xi = \frac{-f n_{\text{in}}^{\text{mol}}}{v_{\text{fr}}} = \frac{(-0.67)(40)}{-1} = 26.8 \text{ g moles reacting}$$

The species material balances (in moles) using Equation 10.2 gives a direct solution for each species in the product:

$$n_{\text{out}}^{\text{CH}_4} = 40 - 1(26.8) = 13.2$$

$$n_{\text{out}}^{\text{Cl}_2} = 50 - 1(26.8) = 23.2$$

$$n_{\text{out}}^{\text{CH}_3\text{Cl}} = 0 + 1(26.8) = 26.8$$

$$n_{\text{out}}^{\text{HCl}} = 0 + 1(26.8) = 26.8$$

$$n_{\text{out}}^{\text{N}_2} = 10 - 0(26.8) = 10.0$$

Therefore, the composition of the product stream is: 13.2% CH$_4$, 23.2% Cl$_2$, 26.8% CH$_3$Cl, 26.8% HCl, and 10% N$_2$ because the total number of product moles is conveniently 100 g mol.

Example 25

A proposed process to remove H$_2$S is by reaction with SO$_2$:

$$2 \text{H}_2\text{S}(g) + \text{SO}_2(g) \rightarrow 3\text{S(s)} + 2\text{H}_2\text{O(g)}$$

In a test of the process, a gas stream containing 20% H$_2$S and 80% CH$_4$ were combined with a stream of pure SO$_2$. The process produced 5000 lb of S(s), and in the product gas the ratio of SO$_2$ to H$_2$S was equal to 3, and the ratio of H$_2$O to
H₂S was 10. You are asked to determine the fractional conversion of the limiting reactant, and the feed rates of the H₂S and SO₂ streams.

Solution

![Diagram of a reactor](image)

Figure E10.2

Basis is 5000 lb S (156.3 lb mol S)

Basis: S = 5000 lb (156.3 lb mol)

Specifications: 4 (3 independent)

\[x_{H_2S}^r = 0.20 \text{ or } x_{CH_4}^r = 0.80, \ (n_{SO_2}^P/n_{H_2S}^P) = 3, \ (n_{H_2O}^P/n_{H_2S}^P) = 10 \]

The **species balances** in pound moles after introduction of most of the specifications are:

\[
\begin{align*}
\text{S:} & \quad 156.3 = 0 + 3 \xi \\
\text{H}_2\text{S:} & \quad n_{H_2S}^P = 0.20F - 2 \xi \\
\text{SO}_2: & \quad n_{SO_2}^P = F_{SO_2} - 1 \xi \\
\text{H}_2\text{O:} & \quad n_{H_2O}^P = 0 + 2 \xi \\
\text{CH}_4: & \quad n_{CH_4}^P = 0.80F + 0 (\xi)
\end{align*}
\]

The remaining specifications are

\[
\begin{align*}
n_{SO_2}^P & = 3n_{H_2S}^P \\
n_{H_2O}^P & = 10n_{H_2S}^P
\end{align*}
\]

If you solve the equations without using a computer, you should start by calculating \(\xi \) from Equation (a)

\[\xi = \frac{156.3 \text{ mol}}{3} = 52.1 \text{ mol rxn} \]

Then Equation (d) gives

\[n_{H_2O}^P = 2(52.1) = 104.2 \text{ lb mol H}_2\text{O} \]

Next, Equation (g) gives

\[n_{H_2S}^P = \frac{1}{10}n_{H_2O}^P = 10.4 \text{ lb mol H}_2\text{S} \]

And Equation (f) gives

\[n_{SO_2}^P = 3(10.4) = 31.2 \text{ lb mol SO}_2 \]
If you solve the rest of the equations in the order (b), (c), and (e), you find

\[F = 573 \text{ lb mol} \quad F_{SO_2} = 83.3 \text{ lb mol} \quad n_{CH_4}^F = 458 \text{ lb mol} \]

Finally, you can identify H\(_2\)S as the **limiting reactant** because the **molar ratio** of SO\(_2\) to H\(_2\)S in the product gas (3/1) is greater than the molar ratio in the chemical reaction equation (2/1).

The fractional conversion from Equation 10.3 is the consumption of H\(_2\)S divided by the total feed of H\(_2\)S

\[f = \frac{-(-2)\xi}{0.2F} = \frac{(2)(52.1)}{(0.2)(573)} = 0.91 \]

Processes Involving Multiple Reactions

For **open** system, steady-state processes with multiple reactions, Equation 10.1 in moles becomes for component \(i \)

\[n_{i}^{\text{out}} = n_{i}^{\text{in}} + \sum_{j=1}^{R} v_{ij} \xi_j \quad \text{...10.4} \]

Where:

\(v_j \) is the stoichiometric coefficient of species \(i \) in reaction \(j \) in the minimal set.

\(\xi_j \) is the extent of reaction for the \(j \)th reaction in the minimal set.

\(R \) is the number of independent chemical reaction equations (the size of the minimal set).

An equation analogous to Equation 10.4 can be written for a **closed, unsteady-state** system. The total moles, \(N \), exiting a reactor are

\[N = \sum_{i=1}^{S} n_{i}^{\text{out}} = \sum_{i=1}^{S} n_{i}^{\text{in}} + \sum_{i=1}^{S} \sum_{j=1}^{R} v_{ij} \xi_j \quad \text{...10.5} \]

Where \(S \) is the number of species in the system.

Example 26

Formaldehyde (CH\(_2\)O) is produced industrially by the catalytic oxidation of methanol (CH\(_3\)OH) according to the following reaction:

\[\text{CH}_3\text{OH} + \text{1/2O}_2 \rightarrow \text{CH}_2\text{O} + \text{H}_2\text{O} \quad (1) \]

Unfortunately, under the conditions used to produce formaldehyde at a profitable rate, a significant portion of the formaldehyde reacts with oxygen to produce CO and H\(_2\)O, that is,

\[\text{CH}_2\text{O} + \text{1/2O}_2 \rightarrow \text{CO} + \text{H}_2\text{O} \quad (2) \]

Assume that methanol and twice the stoichiometric amount of air needed for complete conversion of the CH\(_3\)OH to the desired products (CH\(_2\)O and H\(_2\)O) are fed to the reactor. Also assume that 90% conversion of the methanol results, and that a 75% yield of formaldehyde occurs based on the theoretical production of CH\(_2\)O by Reaction 1. Determine the composition of the product gas leaving the reactor.

Solution

Figure El0.3 is a sketch of the process with \(y_i \) indicating the **mole fraction** of the respective components in P (a gas).
The limiting reactant is CH\textsubscript{3}OH.

Use the fraction conversion, Equation 10.3:

\[\xi_1 = -\frac{0.90}{-1} (1) = 0.9 \text{ g moles} \]

The yield is related to \(\xi \) as follows

By reaction 1:

\[n_{\text{CH}_3\text{O}}^{\text{out,1}} = n_{\text{CH}_3\text{O}}^{\text{in,1}} + 1(\xi_1) = 0 + \xi_1 = \xi_1 \]

By reaction 2:

\[n_{\text{CH}_3\text{O}}^{\text{out,2}} = n_{\text{CH}_3\text{O}}^{\text{in,2}} - 1(\xi_2) = n_{\text{CH}_3\text{O}}^{\text{out,1}} - \xi_2 = \xi_1 - \xi_2 \]

The yield is

\[\frac{n_{\text{CH}_3\text{O}}^{\text{out,2}}}{F} = \frac{\xi_1 - \xi_2}{1} = 0.75 \]

\(\xi_2 = 0.15 \text{ g moles reacting} \)

The entering oxygen is twice the required oxygen based on Reaction 1, namely

\[n_{\text{O}_2}^A = 2 \left(\frac{1}{2} F \right) = 2 \left(\frac{1}{2} \right) (1) = 1.00 \text{ g mol} \]

\[A = \frac{n_{\text{O}_2}^A}{0.21} = \frac{1.00}{0.21} = 4.76 \text{ g mol} \]

\[n_{\text{O}_2}^A = 4.76 - 1.00 = 3.76 \text{ g mol} \]

Implicit equation:

\[\sum v_i^p = 1 \]

Calculate P using Equation 10.5:

\[P = \sum_{i=1}^{S} n_i^{\text{in}} + \sum_{j=1}^{R} v_j \xi_j \]

\[= 1 + 4.76 + \sum_{j=1}^{2} v_j \xi_j \]

\[= 5.76 + [(1) + (-1/2)^1 + (1) + 0 + (1) + 0] = 0.9 \]

\[+ [0 + (-1/2)^1 + 1 + 0 + (1) + (1)] = 0.15 = 6.28 \text{ g mol} \]

The material balances:
Example 27

A bioreactor is a vessel in which biological conversion is carried out involving enzymes, microorganisms, and/or animal and plant cells. In the anaerobic fermentation of grain, the yeast Saccharomyces cerevisiae digests glucose ($C_6H_{12}O_6$) from plants to form the products ethanol (C_2H_5OH) and propenoic acid ($C_2H_3CO_2H$) by the following overall reactions:

\[
\text{Reaction 1: } C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2
\]

\[
\text{Reaction 2: } C_6H_{12}O_6 \rightarrow 2C_2H_3CO_2H + 2H_2O
\]

In a batch process, a tank is charged with 4000 kg of a 12% solution of glucose in water. After fermentation, 120 kg of CO_2 are produced and 90 kg of unreacted glucose remains in the broth. What are the weight (mass) percents of ethanol and propenoic acid in the broth at the end of the fermentation process? Assume that none of the glucose is assimilated into the bacteria.

Solution

An unsteady-state process in a closed system

\[
n_i^{\text{final}} = n_i^{\text{initial}} + \sum_{j=1}^{R} n_{ij} \xi_j
\]
\[
\begin{align*}
n_{H_2O}^{Initial} &= \frac{4000(0.88)}{18.02} = 195.3 \\
n_{C_6H_{12}O_6}^{Initial} &= \frac{4000(0.12)}{180.1} = 2.665
\end{align*}
\]

Specifications: 4 (3 independent)

\[n_{H_2O}^{Initial} = 195.3\text{ or } n_{C_6H_{12}O_6}^{Initial} = 2.665\]

(one is independent, the sum is F in mol)

\[n_{C_6H_{12}O_6}^{Final} = \frac{90}{180.1} = 0.500\quad n_{CO_2}^{Final} = \frac{120}{44} = 2.727.\]

The material balance equations, after introducing the known values for the variables, are:

\[
\begin{align*}
\text{H}_2\text{O}: \quad & n_{H_2O}^{Final} = 195.3 + (0)\xi_1 + (2)\xi_2 \quad \text{(a)} \\
\text{C}_6\text{H}_{12}\text{O}_6: \quad & 0.500 = 2.665 + (-1)\xi_1 + (-1)\xi_2 \quad \text{(b)} \\
\text{C}_2\text{H}_5\text{OH}: \quad & n_{C_2H_5OH}^{Final} = 0 + 2\xi_1 + (0)\xi_2 \quad \text{(c)} \\
\text{C}_2\text{H}_3\text{CO}_2\text{H}: \quad & n_{C_2H_3CO_2H}^{Final} = 0 + (0)\xi_1 + (2)\xi_2 \quad \text{(d)} \\
\text{CO}_2: \quad & 2.727 = 0 + (2)\xi_1 + (0)\xi_2 \quad \text{(e)}
\end{align*}
\]

Solution of equations: (e) (b) simultaneously, and then solve, (a), (c), and (d) in order.

\[\xi_1 = 1.364 \text{ kg moles reacting} \quad \xi_2 = 0.801 \text{ kg moles reacting}\]

<table>
<thead>
<tr>
<th>Species</th>
<th>Results</th>
<th>Conversion to mass percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kg)</td>
<td>(kmo)</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>196.9</td>
<td>18.01</td>
</tr>
<tr>
<td>C(6)H({12})O(_6)</td>
<td>2.728</td>
<td>46.05</td>
</tr>
<tr>
<td>C(_2)H(_5)OH</td>
<td>1.602</td>
<td>72.03</td>
</tr>
<tr>
<td>C(_2)H(_3)CO(_2)H</td>
<td>2.277</td>
<td>44.0</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>0.500</td>
<td>180.1</td>
</tr>
<tr>
<td>C(6)H({12})O(_6)</td>
<td>3997</td>
<td></td>
</tr>
</tbody>
</table>

Note: The total mass of 3977 kg is close enough to 4000 kg of feed to validate the results of the calculations.

Element Material Balances

- Elements in a process are **conserved**, and consequently you can apply Equation 10.1 to the elements in a process.
- Because elements are **not generated or consumed**, the generation and consumption terms in Equation 10.1 can be **ignored**.

For Example: Carbon dioxide is absorbed in water in the process shown in Figure 10.2. The reaction is

\[\text{CO}_2(g) + \text{H}_2\text{O}(\ell) \rightarrow \text{H}_2\text{CO}_3(\ell)\]
Three unknowns exist: W, F, and P, and the process involves three element C, H, and O. It would appear that you can use the three element balances (in moles) [Basis P = 100 mol]

\[W(0) + F(1) = 0.05P \]
\[W(2) + F(0) = (0.05(2) + 0.95(2))P = 2P \]
\[W(1) + F(2) = (0.05(3) + 0.95(1))P = 1.10P \]

Example 28

Solution of **Examples 24 and 26** Using Element Balances: All of the given data for this example is the same as in Examples 24 and 25.

Solution

1. **Example 24**

The element material balances are:

\[C: \quad 100 (0.40) = n_{CH_4}(1) + n_{CH_3Cl}(1) \]
\[H: \quad 100 (0.40) = n_{CH_4}(4) + n_{HCl}(1) + n_{CH_3Cl}(3) \]
\[Cl: \quad 100 (0.50) = n_{Cl_2}(2) + n_{HCl}(1) + n_{CH_3Cl}(1) \]
\[2N: \quad 100 (0.10) = n_{N_2}(1) \]

The solution of the problem will be the same as found in Example 10.1.

2. **Example 25**

The element balances are:

\[C: \quad 1(1) + 4.76(0) = P[y_{CH_3OH}(1) + y_{CH_3O}(1) + y_{CO}(1)] \]
\[H: \quad 1(4) + 4.76(0) = P[y_{CH_3OH}(4) + y_{CH_3O}(2) + y_{H_2O}(2)] \]
\[O: \quad 1(1) + 1.00 = P[y_{CH_3OH}(1) + y_{O_2}(2) + y_{CH_3O}(1) + y_{H_2O}(1) + y_{CO}(1)] \]
\[2N: \quad 1(0) + 3.76 = P[y_{N_2}(1)] \]

The solution of the problem will not change.

Note: It would be easier to use the term \(y_i^f P = n_i^f \) in the equations above in place of the product of two variables, and P.

Element balances are especially **useful** when you do **not know** what reactions occur in a process. You only know information about the **input** and **output stream** components.
Example 29

In one such experiment for the hydrocracking (cracking reactions) of octane \((\text{C}_8\text{H}_{18})\), the cracked products had the following composition in mole percent: 19.5\% \text{C}_3\text{H}_8, 59.4\% \text{C}_4\text{H}_{10}, and 21.1\% \text{C}_5\text{H}_{12}. You are asked to determine the molar ratio of hydrogen consumed to octane reacted for this process.

Solution

![Diagram of reactor with composition](image)

Figure E10.6

Basis: \(P = 100\ \text{g mol}\)

Element balances: 2 \(\text{H, C}\)

The element balances:

\[
\text{C: } F(8) + G(0) = 100[(0.195)(3) + (0.594)(4) + (0.211)(5)]
\]

\[
\text{H: } F(18) + G(2) = 100[(0.195)(8) + (0.594)(10) + (0.211)(12)]
\]

And the solution is \(F = 50.2\ \text{g mol}\) \(G = 49.8\ \text{g mol}\)

The ratio \(\frac{\text{H}_2 \text{ consumed}}{\text{C}_8\text{H}_{18} \text{ reacted}} = \frac{49.8\ \text{g mol}}{50.2\ \text{g mol}} = 0.992\)

Material Balances Involving Combustion

- **Combustion** is the reaction of a substance with oxygen with the associated release of energy and generation of product gases such as \(\text{H}_2\text{O, CO}_2, \text{CO, and SO}_2\).

- Most **combustion processes** use air as the source of oxygen. For our purposes you can assume that air contains 79\% \text{N}_2 and 21\% \text{O}_2.

Special terms:

1. **Flue or stack gas:** All the gases resulting from combustion process including the water vapor, sometimes known as a wet basis.

2. **Orsat analysis or dry basis:** All the gases resulting from combustion process **not including** the water vapor. **Orsat analysis** refers to a type of gas analysis apparatus in which the volumes of the respective gases are measured over and in equilibrium with water; hence each component is saturated with water vapor. The net result of the analysis is to **eliminate water** as a component being measured (show Figure 10.4).
3. **Complete combustion**: the complete reaction of the hydrocarbon fuel producing CO₂, SO₂, and H₂O.

4. **Partial combustion**: the combustion of the fuel producing at least some CO. Because CO itself can react with oxygen, the production of CO in a combustion process does not produce as much energy as it would if only CO₂ were produced.

5. **Theoretical air (or theoretical oxygen)**: The minimum amount of air (or oxygen) required to be brought into the process for complete combustion. Sometimes this quantity is called the required air (or oxygen).

6. **Excess air (or excess oxygen)**: In line with the definition of excess reactant given in Chapter 9, excess air (or oxygen) would be the amount of air (or oxygen) in excess of that required for complete combustion as defined in (5).

Note: The calculated amount of excess air does not depend on how much material is actually burned but what is possible to be burned. Even if only partial combustion takes place, as, for example, C burning to both CO and CO₂, the excess air (or oxygen) is computed as if the process of combustion went to completion and produced only CO₂.

The percent excess air is identical to the percent excess O₂:

\[
\% \text{ excess air} = \frac{\text{excess air}}{\text{required air}} \times 100 = \frac{\text{excess O}_2 / 0.21}{\text{required O}_2 / 0.21} \times 100 \quad \ldots \, 10.6
\]

Note that the ratio 1/0.21 of air to O₂ cancels out in Equation 10.6. **Percent excess air** may also be computed as

\[
\% \text{ excess air} = \frac{\text{O}_2 \text{ entering process} - \text{O}_2 \text{ required}}{\text{O}_2 \text{ required}} \times 100 \quad \ldots \, 10.7
\]

Or

\[
\% \text{ excess air} = \frac{\text{excess O}_2}{\text{O}_2 \text{ entering} - \text{excess O}_2} \times 100 \quad \ldots \, 10.8
\]

Example 30

Fuels other than gasoline are being eyed for motor vehicles because they generate lower levels of pollutants than does gasoline. Compressed propane is one such proposed fuel. Suppose that in a test 20 kg of C₃H₈ is burned with 400 kg of air to produce 44 kg of CO₂ and 12 kg of CO. What was the percent excess air?

Solution

This is a problem involving the following reaction

\[
\text{C}_3\text{H}_8 + 5\text{O}_2 \rightarrow 3\text{CO}_2 + 4\text{H}_2\text{O}
\]

Basis: 20 kg of C₃H₈
Since the percentage of excess air is based on the complete combustion of \(C_3H_8 \) to \(CO_2 \) and \(H_2O \), the fact that combustion is not complete has no influence on the calculation of “excess air.”

The required \(O_2 \) is

\[
\frac{20 \text{ kg} \; C_3H_8}{44.09 \text{ kg} \; C_3H_8} \times \frac{1 \text{ kg mol} \; C_3H_8}{1 \text{ kg mol} \; C_3H_8} \times \frac{5 \text{ kg mol} \; O_2}{1 \text{ kg mol} \; C_3H_8} = 2.27 \text{ kg mol} \; O_2
\]

The entering \(O_2 \) is

\[
\frac{400 \text{ kg air}}{29 \text{ kg air}} \times \frac{1 \text{ kg mol} \; O_2}{100 \text{ kg mol air}} = 2.90 \text{ kg mol} \; O_2
\]

The percentage of excess air is

\[
\% \ \text{excess air} = \frac{\text{O}_2 \; \text{entering process} - \text{O}_2 \; \text{required}}{\text{O}_2 \; \text{required}} \times 100
\]

\[
\% \ \text{excess air} = \frac{2.90 \text{ lb mol} \; O_2 - 2.27 \text{ lb mol} \; O_2}{2.27 \text{ lb mol} \; O_2} \times 100 = 28\%
\]

Note:

In calculating the amount of excess air, remember that the excess is the amount of air that enters the combustion process over and above that required for complete combustion.

For example, suppose that a gas containing 80% \(C_2H_6 \) and 20% \(O_2 \) is burned in an engine with 200% excess air. Eighty percent of the ethane goes to \(CO_2 \), 10% goes to \(CO \), and 10% remained unburned. What is the amount of the excess air per 100 moles of the gas?

Solution

First, you can ignore the information about the \(CO \) and the unburned ethane because the basis of the calculation of excess air is complete combustion. Specifically \(C \) goes to \(CO_2 \); \(S \) to \(SO_2 \), \(H_2 \) to \(H_2O \), \(CO \) goes to \(CO_2 \) and so on.

Second, the oxygen in the fuel cannot be ignored. Based on the reaction

\[
C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O
\]

Basis: 100 moles of gas

- 80 moles of \(C_2H_6 \) require \(3.5(80) = 280 \) moles of \(O_2 \) for complete combustion.
- The gas contains 20 moles of \(O_2 \), so that only \(280 - 20 = 260 \) moles of \(O_2 \) are needed in the entering air for complete combustion.
- Thus, 260 moles of \(O_2 \) are the required \(O_2 \) and the calculation of the 200% excess \(O_2 \) (air) is based on 260, not 280, moles of \(O_2 \):

<table>
<thead>
<tr>
<th>Entering with air</th>
<th>Moles (O_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required (O_2):</td>
<td>260</td>
</tr>
<tr>
<td>Excess (O_2):</td>
<td>((2)(260) = 520)</td>
</tr>
<tr>
<td>Total (O_2):</td>
<td>780</td>
</tr>
</tbody>
</table>
Example 31

Figure E10.8 is a sketch of a fuel cell in which a continuous flow of methane (CH₄) and air (O₂ plus N₂) produce electricity plus CO₂ and H₂O. Special membranes and catalysts are needed to promote the reaction of CH₄. Based on the data given in Figure E10.8, you are asked to calculate the composition of the products in P.

\[\text{Solution} \]

Assume a complete reaction occurs because no CH₄ appears in P. The system is the fuel cell (open, steady state). The necessary preliminary conversions as follows:

\[\begin{align*}
300 \text{ kg A} & \quad 1 \text{ kg mol A} \\
29.0 \text{ kg A} & \quad = 10.35 \text{ kg mol A in} \\
16.0 \text{ kg CH}_4 & \quad 1 \text{ kg mol CH}_4 \\
16.0 \text{ kg CH}_4 & \quad = 1.00 \text{ kg mol CH}_4 \text{ in} \\
10.35 \text{ kg mol A} & \quad 0.21 \text{ kg mol O}_2 \\
1 \text{ kg mol A} & \quad = 2.17 \text{ kg mol O}_2 \text{ in} \\
10.35 \text{ kg mol A} & \quad 0.79 \text{ kg mol N}_2 \\
1 \text{ kg mol A} & \quad = 8.18 \text{ kg mol N}_2 \text{ in} \\
\end{align*} \]

Basis: 16.0 kg CH₄ entering = 1 kg mol CH₄

Specifications and calculated quantities: 2

\[\sum n_i^P = P \]

Implicit equation:

The element material balances are (in moles):

\[\begin{align*}
\text{Out} & \quad \text{In} \\
\text{C:} & \quad n_{\text{CO}_2}^P(1) = 1(1) \\
\text{H:} & \quad n_{\text{H}_2\text{O}}^P(2) = 1(4) \\
\text{O:} & \quad n_{\text{CO}_2}^P(2) + n_{\text{O}_2}^P(2) + n_{\text{H}_2\text{O}}^P(1) = 2.17(2) \\
\text{2N:} & \quad n_{\text{N}_2}^P = 8.18 \\
\end{align*} \]
The species material balances are:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Out</th>
<th>In</th>
<th>v_x</th>
<th>g mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄⁺</td>
<td>n_{CH_4}</td>
<td>1.0</td>
<td>-</td>
<td>$1 \times 1 = 0$</td>
</tr>
<tr>
<td>O₂⁺</td>
<td>n_{O_2}</td>
<td>2.17</td>
<td>-</td>
<td>$2 \times 1 = 0.17$</td>
</tr>
<tr>
<td>N₂⁺</td>
<td>n_{N_2}</td>
<td>8.18</td>
<td>-</td>
<td>$8 \times 1 = 8.18$</td>
</tr>
<tr>
<td>CO₂⁺</td>
<td>n_{CO_2}</td>
<td>0</td>
<td>+</td>
<td>$1 \times 1 = 1.0$</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>n_{H_2O}</td>
<td>0</td>
<td>+</td>
<td>$2 \times 1 = 2.0$</td>
</tr>
</tbody>
</table>

The solution of either set of equations gives:

\[n_{CH_4}^P = 0, n_{O_2}^P = 0.17, n_{N_2}^P = 8.18, n_{CO_2}^P = 1.0, n_{H_2O}^P = 2.0, P = 11.35 \]

The mole percentage composition of P is:

\[y_{O_2} = 1.5\%, y_{N_2} = 72.1\%, y_{CO_2} = 8.8\%, \text{ and } y_{H_2O} = 17.6\% \]

Problems

1. Hydrofluoric acid (HF) can be manufactured by treating calcium fluoride (CaF₂) with sulfuric acid (H₂SO₄). A sample of fluorospar (the raw material) contains 75% by weight CaF₂ and 25% inert (nonreacting) materials. The pure sulfuric acid used in the process is in 30% excess of that theoretically required. Most of the manufactured HF leaves the reaction chamber as a gas, but a solid cake that contains 5% of all the HF formed, plus CaSO₄, inert, and unreacted sulfuric acid is also removed from the reaction chamber. Assume complete conversion of the CaF₂ occurs. How many kilograms of cake are produced per 100 kg of fluorospar charged to the process?

2. Corrosion of pipes in boilers by oxygen can be alleviated through the use of sodium sulfite. Sodium sulfite removes oxygen from boiler feedwater by the following reaction:

\[2Na_2SO_3 + O_2 \rightarrow 2NaSO_4 \]

How many pounds of sodium sulfite are theoretically required (for complete reaction) to remove the oxygen from 8,330,000 lb of water (10⁶ gal) containing 10.0 parts per million (ppm) of dissolved oxygen and at the same time maintain a 35% excess of sodium sulfite?

3. Consider a continuous, steady-state process in which the following reactions take place:

\[C_6H_{12} + 6H_2O \rightarrow 6CO + 12H_2 \]
\[C_6H_{12} + H_2 \rightarrow C_6H_{14} \]

In the process 250 moles of C₆H₁₂ and 800 moles of H₂O are fed into the reactor each hour. The yield of H₂ is 40.0% and the selectivity of H₂ relative to C₆H₁₄ is 12.0. Calculate the molar flow rates of all five components in the output stream.

4. Consider a system used in the manufacture of electronic materials (all gases except Si)

\[SiH₄, Si₂H₆, Si₃H₈, H₂, Si \]

How many independent element balances can you make for this system?
5. Methane burns with \(\text{O}_2 \) to produce a gaseous product that contains \(\text{CH}_4, \text{O}_2, \text{CO}_2, \text{CO}, \text{H}_2\text{O}, \) and \(\text{H}_2 \). How many independent element balances can you write for this system?

6. Solve the problems (1, 2 & 3) using element balances.

7. Pure carbon is burned in oxygen. The flue gas analysis is: \(\text{CO}_2 75 \text{ mol}\% \), \(\text{CO} 14 \text{ mol}\% \) & \(\text{O}_2 11 \text{ mol}\% \). What was the percent excess oxygen used?

8. Toluene, \(\text{C}_7\text{H}_8 \), is burned with 30\% excess air. A bad burner cause 15\% of the carbon to form soot (pure C) deposited on the walls of the furnace, what is the Orsat analysis of the gases leaving the furnace?

9. A synthesis gas analyzing \(\text{CO}_2: 6.4\%, \text{O}_2: 0.2\% \), \(\text{CO}: 40.0\% \) and \(\text{H}_2: 50.8\% \) (the balance is \(\text{N}_2 \)) is burned with excess dry air. The problem is to determine the composition of the flue gas. How many degrees of freedom exist in this problem, that is, how many additional variables must be specified?

10. A coal analyzing 65.4\% C, 5.3\% H, 0.6\% S, 1.1\% N, 18.5\% O, and 9.1\% ash is burned so that all combustible is burnt out of the ash. The flue gas analyzes 13.00\% \(\text{CO}_2 \), 0.76\% \(\text{CO} \), 6.17\% \(\text{O}_2 \), 0.87\% \(\text{H}_2 \), and 79.20\% \(\text{N}_2 \). All of the sulfur burns to \(\text{SO}_2 \), which is included in the \(\text{CO}_2 \) in the gas analysis (i.e., \(\text{CO}_2 + \text{SO}_2 = 13\% \)). Calculate:

 a. Pounds of coal fired per 100 lb mol of dry flue gas as analyzed;
 b. Ratio of moles of total combustion gases to moles of dry air supplied;
 c. Total moles of water vapor in the stack gas per 100 lb of coal if the entering air is dry;
 d. Percent excess air.

11. A hydrocarbon fuel is burnt with excess air. The Orsat analysis of the flue gas shows 10.2\% \(\text{CO}_2 \), 1.0\% \(\text{CO} \), 8.4\% \(\text{O}_2 \), and 80.4\% \(\text{N}_2 \). What is the atomic ratio of H to C in the fuel?

Answers:

1. 186 kg
2. 887 lb
3. (a) \(\text{C}_6\text{H}_{12} = 139 \text{ mol/hr} \); (b) \(\text{H}_2\text{O} = 453 \text{ mol/hr} \); (c) \(\text{CO} = 347 \text{ mol/hr} \); (d) \(\text{H}_2 = 640 \text{ mol/hr} \); (e) \(\text{C}_6\text{H}_{14} = 53.3 \text{ mol/hr} \).
4. Two
5. Three
6. See the answers to the problems (1, 2 & 3).
7. 4.5\%
8. 9.1\% \(\text{CO}_2 \), 8.9\% \(\text{O}_2 \), 82\% \(\text{N}_2 \)
9. 1
10. (a) 252; (b) 1.063; (c) 2.31; (d) 33.8\%
11. 0.81

2.6 Material Balance Problems Involving Multiple Units

- A **process flowsheet** (flowchart) is a graphical representation of a process. A flowsheet describes the **actual process** in sufficient detail that you can use it to formulate material (and energy) balances.
Figure 11.1a illustrates a serial combination of mixing and splitting stages. In a **mixer**, two or more entering streams of different compositions are combined. In a **splitter**, two or more streams exit, all of which have the same composition. In a **separator**, the exit streams can be of different compositions.

![Figure 11.1a serial mixing and splitting in a system without reaction. Streams 1 plus 2 mix to form Stream 3, and Stream 5 is split into Streams 6 and 7.](image)

![Figure 11.1b the dashed line I designates the boundary for overall material balances made on the process in Figure 11.1a.](image)

![Figure 11.1c Dashed lines II, III and IV designate the boundaries for material balances around each of the individual units comprising the overall process.](image)
Figure 11.1d the dashed line V designates the boundary for material balances around a system comprised of the mixing point plus the unit portrayed by the box.

Figure 11.1e the dashed line VI designates the boundary for material balances about a system comprised of the unit portrayed by the box plus the splitter.

Figure 11.1f the dashed line VII designates the boundary for material balances about a system comprised of the mixer plus the splitter.

Example 32

Acetone is used in the manufacture of many chemicals and also as a solvent. In its latter role, many restrictions are placed on the release of acetone vapor to the environment. You are asked to design an acetone recovery system having the flow sheet illustrated in Figure 11.1. All the concentrations shown in 11.1 of both the gases and liquids are specified in weight percent in this special case to make the calculations simpler. Calculate, \(A, F, W, B, \) and \(D \) per hour. \(G = 1400 \text{ kg/hr} \).
Solution

This is an open, steady-state process without reaction. Three subsystems exist.

Pick 1 hr as a basis so that $G = 1400$ kg.

The mass balances for Unit 1 (Absorber Column)

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air: 1400 (0.95) =</td>
<td>$A(0.995)$ (a)</td>
</tr>
<tr>
<td>Acetone: 1400 (0.03) =</td>
<td>$F(0.19)$ (b)</td>
</tr>
<tr>
<td>Water: 1400 (0.02) + W(1.00) =</td>
<td>$F(0.81)$ + $A(0.005)$ (c)</td>
</tr>
</tbody>
</table>

Solve Equations (a), (b), and (c) to get $A = 1336.7$ kg/hr, $F = 221.05$ kg/hr and $W = 157.7$ kg/hr

(Check) Use the total balance (Absorber Column).

$G + W = A + F$

1400 1336
157.7 221.05
1557.7 ≈ 1557.1

The mass balances for the combined Units 2 plus 3 (Distillation & Condenser) are:

Acetone: $221.05(0.19) = D(0.99) + B(0.04)$ (d)

Water: $221.05(0.81) = D(0.01) + B(0.96)$ (e)

Solve Equations (d) and (e) simultaneously to get $D = 34.90$ kg/hr and $B = 186.1$ kg/hr

(Check) Use the total balance (Distillation & Condenser)

$F = D + B$ or $221.05 = 34.90 + 186.1 = 221.0$

Note

As a matter of interest, what other mass balances could be written for the system and substituted for any one of the Equations (a) through (e)? Typical balances would be the overall balances.
Example 33
In the face of higher fuel costs and the uncertainty of the supply of a particular fuel, many companies operate two furnaces, one fired with natural gas and the other with fuel oil. The gas furnace uses air while the oil furnace uses an oxidation stream that analyzes: \(\text{O}_2, 20\%; \text{N}_2, 76\%; \) and \(\text{CO}_2, 4\%. \) The stack gases go up a common stack, See Figure E11.2.

The reserve of fuel oil was only 560 bbl. How many hours could the company operate before shutting down if no additional fuel oil was attainable? How many lb mol/hr of natural gas were being consumed? The minimum heating load for the company when translated into the stack gas output was 6205 lb mol/hr of dry stack gas. The molecular weight of the fuel oil was 7.91 lb/lb mol, and its density was 7.578 lb/gal.

Solution
This is an open, steady-state process with reaction. Two subsystems exist.

\[
\begin{array}{c|c|c}
\text{In} & \text{Out} \\
\hline
\text{Air:} & G (0.95) & = A(0.995) \\
\text{Acetone:} & G(0.03) & = D(0.99) + B(0.04) \\
\text{Water:} & G (0.02) + W & = A(0.005) + D(0.01) + B(0.96) \\
\text{Total} & G + W & = A + D + B
\end{array}
\]
87

Solve the S balance for \(F \); the sulfur is a tie component. Then solve for the other four balances simultaneously for \(G \). The results are:

\[
F = 207 \text{ lb mol/hr and } G = 499 \text{ lb mol/hr}
\]

Finally, the fuel oil consumption is

\[
\frac{207 \text{ lb mol/hr}}{7.91 \text{ lb mol/gal}} \times 7.578 \text{ lb gal} = 5.14 \text{ bbl/hr}
\]

If the fuel oil reserves were only 560 bbl,

\[
\frac{560 \text{ bbl}}{5.14 \text{ bbl/hr}} = 109 \text{ hr}
\]

Example 34

Figure E11.3 shows the process and the known data. You are asked to calculate the compositions of every flow stream, and the fraction of the sugar in the cane that is recovered.

![Figure E11.3](image)

Solution

Basis: 1 hour (M= 1000 lb)

Let \(S = \text{sugar} \), \(P = \text{pulp} \), and \(W = \text{water} \).

For the crystallizer the equations are

\[
\text{Sugar: } K (0.40) = L (0) + 1000
\]

Sugar: \(K (0.40) = L (0) + 1000 \)

Water: \(K (0.60) = L + 0 \)
From which you get $K = 2500 \text{ lb}$ and $L = 1500 \text{ lb}$.

Check using the total flows: $2500 = 1500 + 1000 = 2500$

Using same method for solution: evaporator, screen, and lastly solve the equations for the mill.

The results for all of the variables are:

<table>
<thead>
<tr>
<th>lb</th>
<th>mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D = 16,755$</td>
<td>$\omega_D^F = 0.174$</td>
</tr>
<tr>
<td>$E = 7,819$</td>
<td>$\omega_E^D = 0.026$</td>
</tr>
<tr>
<td>$F = 24,574$</td>
<td>$\omega_F^E = 0.73$</td>
</tr>
<tr>
<td>$G = 1,152$</td>
<td>$\omega_G^F = 0.014$</td>
</tr>
<tr>
<td>$H = 6,667$</td>
<td>$\omega_H^G = 0.036$</td>
</tr>
<tr>
<td>$J = 4,167$</td>
<td>$\omega_J^H = 0.85$</td>
</tr>
<tr>
<td>$K = 2,500$</td>
<td>$\omega_K^J = 0.60$</td>
</tr>
<tr>
<td>$L = 1,500$</td>
<td>$\omega_F^L = 0.174$</td>
</tr>
<tr>
<td>$M = 1000$</td>
<td>$\omega_E^M = 0.026$</td>
</tr>
</tbody>
</table>

The fraction of sugar recovered = \[
\frac{\text{product (sugar)}}{\text{in (sugar)}} = \frac{1000}{(24,574)^{\times}(0.16)} = 0.25
\]

Problems

1. A two-stage separations unit is shown in Figure SAT11P1. Given that the input stream F1 is 1000 lb/hr, calculate the value of F2 and the composition of F2.

![Figure SAT11P1](image)

2. A simplified process for the production of SO$_3$ to be used in the manufacture of sulfuric acid is illustrated in Figure SAT11P2. Sulfur is burned with 100% excess air in the burner, but for the reaction $S + O_2 \rightarrow SO_2$, only 90% conversion of the S to SO_2 is achieved in the burner. In the converter, the conversion of SO_2 to SO_3 is 95% complete. Calculate the kg of air required per 100 kg of sulfur burned, and the concentrations of the components in the exit gas from the burner and from the converter in mole fractions.
3. In the process for the production of pure acetylene, C\textsubscript{2}H\textsubscript{2} (see Figure SAT11P3), pure methane (CH\textsubscript{4}), and pure oxygen are combined in the burner, where the following reactions occur:

\begin{align*}
\text{CH}_4 + 2\text{O}_2 &\rightarrow 2\text{H}_2\text{O} + \text{CO}_2 \\
\text{CH}_4 + 1\frac{1}{2}\text{O}_2 &\rightarrow 2\text{H}_2\text{O} + \text{CO} \\
2\text{CH}_4 &\rightarrow \text{C}_2\text{H}_2 + 3\text{H}_2
\end{align*}

(a) Calculate the ratio of the moles of O\textsubscript{2} to moles of CH\textsubscript{4} fed to the burner.

(b) On the basis of 100 lb mol of gases leaving the condenser, calculate how many pounds of water are removed by the condenser.

(c) What is the overall percentage yield of product (pure) C\textsubscript{2}H\textsubscript{2}, based on the carbon in the natural gas entering the burner?

The gases from the burner are cooled in the condenser that removes all of the water. The analysis of the gases leaving the condenser is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C\textsubscript{2}H\textsubscript{2}</td>
<td>8.5</td>
</tr>
<tr>
<td>H\textsubscript{2}</td>
<td>25.5</td>
</tr>
<tr>
<td>CO</td>
<td>58.3</td>
</tr>
<tr>
<td>CO\textsubscript{2}</td>
<td>3.7</td>
</tr>
<tr>
<td>CH\textsubscript{4}</td>
<td>4.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

These gases are sent to an absorber where 97% of the C\textsubscript{2}H\textsubscript{2} and essentially all the CO\textsubscript{2} are removed with the solvent. The solvent from the absorber is sent to the CO\textsubscript{2} stripper, where all the CO\textsubscript{2} is removed. The analysis of the gas stream leaving the top of the CO\textsubscript{2} stripper is as follows:
The solvent from the CO\textsubscript{2} stripper is pumped to the C\textsubscript{2}H\textsubscript{2} stripper, which removes all the C\textsubscript{2}H\textsubscript{2} as a pure product.

Answers:

1. Assume that the compositions in the figure are mass fractions. Then:

<table>
<thead>
<tr>
<th></th>
<th>lb</th>
<th>mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>396</td>
<td>0.644</td>
</tr>
<tr>
<td>Benzene</td>
<td>19.68</td>
<td>0.032</td>
</tr>
<tr>
<td>Xylene</td>
<td>200</td>
<td>0.325</td>
</tr>
</tbody>
</table>

2. 863 lb air/lb S

<table>
<thead>
<tr>
<th></th>
<th>Converter</th>
<th>Burner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO\textsubscript{2}</td>
<td>0.5%</td>
<td>9.5%</td>
</tr>
<tr>
<td>SO\textsubscript{3}</td>
<td>9.4</td>
<td>—</td>
</tr>
<tr>
<td>O\textsubscript{2}</td>
<td>7.4</td>
<td>11.5</td>
</tr>
<tr>
<td>N\textsubscript{2}</td>
<td>82.7</td>
<td>79.0</td>
</tr>
</tbody>
</table>

3. (a) 1.14; (b) 2240 lb; (c) 9.9%.

2.7 Recycle, Bypass, Purge, and the Industrial Application of Material Balances

Introduction

- **Recycle** is fed back from a downstream unit to an upstream unit, as shown in Figure 12.1c. The stream containing the recycled material is known as a recycle stream.
- Recycle system is a system that includes one or more recycle streams.
- Because of the relatively high cost of industrial feedstocks, when chemical reactions are involved in a process, recycle of unused reactants to the reactor can offer significant economic savings for high-volume processing systems. Heat recovery within a processing unit (energy recycle) reduces the overall energy consumption of the process.
Recycle without Chemical Reaction

- **Recycle** of material occurs in a variety of processes that do **not** involve chemical reaction, including **distillation**, **crystallization**, and **heating and refrigeration** systems.
- Examine Figure 12.2. You can write material balances for several different systems, **four** of which are shown by dashed lines in Figure 12.2 (Overall balance 1, Mixer balance 2, Process balance 3 & Separator balance 4).
- The **fresh feed** enters the overall system and the **overall or net product** is removed.
- The **total (gross) feed** enters the process and the **gross product** is removed.
- In addition, you can make balances (not shown in Figure 12.2) about **combinations of subsystems**, such as the **process plus the separator (3 plus 4)**, or the **mixing point plus the process (2 plus 3)**.

Figure 12.2 Process with recycle (the numbers designate possible system boundaries for the material balances).

Example 35

Figure E12.1a is a schematic of a process for the production of flake NaOH, which is used in households to clear plugged drains in the plumbing (e.g., Drano).
The fresh feed to the process is 10,000 lb/hr of a 40% aqueous NaOH solution. The fresh feed is combined with the recycled filtrate from the crystallizer, and fed to the evaporator where water is removed to produce a 50% NaOH solution, which in turn is fed to the crystallizer. The crystallizer produces a filter cake that is 95% NaOH crystals and 5% solution that itself consists of 45% NaOH. The filtrate contains 45% NaOH.

a. You are asked to determine the flow rate of water removed by the evaporator, and the recycle rate for this process.

b. Assume that the same production rate of NaOH flakes occurs, but the filtrate is not recycled. What would be the total feed rate of 40% NaOH have to be then? Assume that the product solution from the evaporator still contains 50% NaOH.

Solution

Open, steady-state process.

a. **Basis: 10,000 lb fresh feed (equivalent to 1 hour)**

The unknowns are W, G, P, and R.

Overall NaOH balance

\[(0.4)(10,000) = 0.95 P + (0.45)(0.05) P \]

\[P = 4113 \text{ lb}\]

Overall H}_2\text{O balance}

\[(0.6)(10,000) = W + [(0.55)(0.05)](4113)\]

\[W = 5887 \text{ lb}\]

(or use the overall total balance 10,000 = 4113 + W)

The total amount of NaOH exiting with P is \[[(0.95) + (0.45)(0.05)](4113) = 4000 \text{ lb}\]

NaOH balance on the crystallizer \[0.5 G = 4000 + 0.45 R\]

H}_2\text{O balance on the crystallizer \[0.5 G = 113 + 0.55 R\]

(or use the total balance \(G = R + 4113\))

\[R = 38,870 \text{ lb}\]

b. **Figure E12.1b.**
The basis is now $P = 4113$ lb (the same as 1 hour)

The unknowns are now F, W, G, and H.

NaOH balance on the crystallizer

$$0.5 \ G = [(0.95) + (0.05) (0.45)] (4113) + 0.45 \ H$$

H$_2$O balance on the crystallizer

$$0.5G = [(0.05) (0.55) (4113)] + 0.55 \ H$$

$H = 38,870$ lb

Overall NaOH balance

$$0.40 \ F = 0.45(38,870) + 4000$$

$$F = 53,730$$ lb

Note that without recycle, the feed rate must be 5.37 times larger than with recycle to produce the same amount of product.

Recycle with Chemical Reaction

The most common application of recycle for systems involving chemical reaction is the recycle of reactants, an application that is used to increase the overall conversion in a reactor. Figure 12.3 shows a simple example for the reaction

If you calculate the extent of reaction for the overall process in Figure 12.3 based on B

$$\xi_{\text{overall}} = \frac{100 - 0}{1} = 100 \text{ moles reacting}$$

If you use material balances to calculate the output P of the reactor on the basis of 1 second you get $A = 900$ g mol

$B = 100$ g mol

And the extent of reaction based on B for the reactor by itself as the system is

$$\xi_{\text{reactor}} = \frac{100 - 0}{1} = 100 \text{ moles reacting}$$
In general, the extent of reaction is the same regardless of whether an overall material balance is used or a material balance for the reactor is used.

- Two types of conversion when reactions occur:

 1. Overall fraction conversion:

 \[
 \text{overall conversion} = \frac{\text{mass (moles) of reactant in the output of the overall process}}{\text{mass (moles) of reactant in the fresh feed}}
 \]

 2. Single-pass (“once-through”) fraction conversion:

 \[
 \text{single-pass conversion} = \frac{\text{mass (moles) of reactant exiting the reactor}}{\text{mass (moles) of reactant fed into the reactor}}
 \]

For the simple recycle reactor in Figure 12.3, the overall conversion is

\[
\frac{100 - 0}{100} \times 100 = 100\%
\]

And the single-pass conversion is

\[
\frac{1000 - 900}{1000} \times 100 = 10\%
\]

When the fresh feed consists of more than one reactant, the conversion can be expressed for a single component, usually the limiting reactant, or the most important (expensive) reactant.

- The overall conversion and the single-pass conversion can be expressed in terms of the extent of reaction, \(\xi \).

\[
\text{Overall conversion of species A} = f_{OA} = \frac{-v_{A} \xi}{n_{A}^{\text{fresh feed}}} \quad (12.1)
\]

\[
\text{Single-pass conversion} = f_{SP} = \frac{-v_{A} \xi}{n_{A}^{\text{reactor feed}}} \quad (12.2)
\]

\[
f_{SP} = f_{OA} - \frac{n_{A}^{\text{fresh feed}}}{n_{A}^{\text{fresh feed}} + n_{A}^{\text{recycle}}} \quad (12.3)
\]

Example 36

Cyclohexane (C\(_6\)H\(_{12}\)) can be made by the reaction of benzene (Bz) (C\(_6\)H\(_6\)) with hydrogen according to the following reaction:

\[
\text{C}_6\text{H}_6 + 3\text{H}_2 \rightarrow \text{C}_6\text{H}_{12}
\]

For the process shown in Figure El2.2, determine the ratio of the recycle stream to the fresh feed stream if the overall conversion of benzene is 95%, and the single-pass conversion is 20%. Assume that 20% excess hydrogen is used in the fresh feed, and that the composition of the recycle stream is 22.74 mol % benzene and 77.26 mol % hydrogen.
Solution

The process is open and steady state.

Basis = 100 mol (g mol or lb mol) of fresh benzene feed

Excess $H_2 = (\text{in} - \text{required})/ \text{required}$ (for complete reaction)

In H_2 (Feed):

$$n_{H_2}^F = 100(3)(1 + 0.20) = 360 \text{ mol}$$

The total fresh feed $= 100 + 360 = 460 \text{ mol}$.

From Equation (12.1) for benzene ($\nu_{Bz} = -1$)

$$0.95 = \frac{-(-1)\xi}{100}$$

$\xi = 95$ reacting moles.

The unknowns are $R, n_{Bz}^P, n_{H_2}^P,$ and $n_{C_4H_12}^P$.

The species overall balances are

$$n_i^{\text{out}} = n_i^{\text{in}} + \nu_{\text{overall}} \xi$$

- Bz: $n_{Bz}^P = 100 + (-1)(95) = 5 \text{ mol}$
- H_2: $n_{H_2}^P = 360 + (-3)(95) = 75 \text{ mol}$
- C_4H_{12}: $n_{C_4H_{12}}^P = 0 + (1)(95) = 95 \text{ mol}$

$P = 175 \text{ mol}$

The amount of the Bz feed to the reactor is $100 + 0.2274R$, and $\xi = 95$. Thus, for benzene

$$0.20 = \frac{-(-1)95}{100 + 0.2274R}$$

and

$$R = 1649 \text{ mol}$$

Finally, the ratio of recycle to fresh feed is

$$\frac{R}{F} = \frac{1649 \text{ mol}}{460 \text{ mol}} = 3.58$$

Example 37

Immobilized glucose isomerase is used as a catalyst in producing fructose from glucose in a fixed-bed reactor (water is the solvent). For the system shown in Figure El2.3a, what percent conversion of glucose results on one pass through the reactor when the ratio of the exit stream to the recycle stream in mass units is equal to 8.33? The reaction is

$$C_{12}H_{22}O_{11} \rightarrow C_{12}H_{22}O_{11}$$

Glucose Fructose
Solution

The process is an open, steady-state process with a reaction occurring and a recycle.

- Figure E12.3b includes all the known and unknown values of the variables using appropriate notation (W stands for water, G for glucose, and F for fructose).
- Note that the recycle stream and product stream have the same composition, and consequently the same mass symbols are used in the diagram for each stream.

Overall balances

Pick as a basis $S = 100$ kg

Total:

$P = S = 100$ kg

Consequently,

$$R = \frac{100}{8.33} = 12.0 \text{ kg } \Rightarrow R = 8.33$$

Overall no water is generated or consumed, hence

Water:

$$100(0.60) = P\omega_W^R = 100\omega_W^R$$

$$\omega_W^R = 0.60$$

Mixing point 1

Total:

$100 + 12 = T = 112$

Glucose:

$100(0.40) + 12\omega_C^R = 112\omega_C^T$

Fructose:

$0 + 12\omega_F^R = 112(0.04)$

Or

$$\omega_F^R = 0.373$$
Also, because $\omega^F_T + \omega^R_T + \omega^D_T = 1$,

$\omega^D_T = 1 - 0.373 - 0.600 = 0.027$

Next from the glucose balance $\omega^G_T = 0.360$

Reactor plus Separator 2

Total: $T = 12 + 100 = 112$ (a redundant equation)

Glucose: $\omega^G_T (f)(\omega^G_T T) = (R + P)(\omega^G_P) = (112)(0.027)$

$40.3 - 3.02 = f(40.32)$

$f = 0.93$

Check by using Equation 12.2 and the *extent of reaction*

$$\xi = \frac{3.02 - 40}{-1} = 37 \quad f = \frac{(-1)(37)}{40} = 0.93$$

Example 38

Reactors that involve biological materials (bioreactors) use living organisms to produce a variety of products. Bioreactors are used for producing ethanol, antibiotics, and proteins for dietary supplements and medical diagnosis.

Figure E12.4 shows a recycle bioreactor in which the overall conversion of the proprietary component in the fresh feed to product is 100%. The conversion of the proprietary component to product *per pass* in the reactor is 40%. Determine the amount of recycle and the mass percent of component in the recycle stream if the product stream contains 90% product, and the feed to the reactor contains 3 wt % of the component.

Assume that the component and the product have essentially the same molecular weight, and that the waste contains only water and dead cells.

Solution

Basis = 100 kg of fresh feed (F).

Overall balances

Total balance: $100 = P + W$

Component balance: $0.10 (100) = 0.90 P$
P = 11.1 kg \quad W = 88.9 \text{ kg}

The reactor plus the product recovery unit balance

\[
\begin{align*}
\text{Accumulation} & \quad \text{Input} & \quad \text{Output} & \quad \text{Generation} & \quad \text{Consumption} \\
0 & = [100 (0.10) + R\omega] - R\omega + 0 - 0.40 [100 (0.10) + R\omega] \\
R\omega & = 15 \text{ kg of component in the recycle stream}
\end{align*}
\]

Mixer balance

Component balance: \(100 \times (0.10) + 15 = 0.03 \, F'\) \quad \(\longrightarrow\) \quad \(F' = 833 \text{ kg}\)

Total balance: \(R + 100 = F'\) \quad \(\longrightarrow\) \quad \(R = 833 - 100 = 733 \text{ kg}\)

\(\omega = \frac{15}{733} = 0.0205\)

Bypass and Purge

a. A bypass stream—a stream that skips one or more stages of the process and goes directly to another downstream stage (Figure 12.4).

A bypass stream can be used to control the composition of a final exit stream from a unit by mixing the bypass stream and the unit exit stream in suitable proportions to obtain the desired final composition.

![Figure 12.4 A process with a bypass stream.](image)

b. A purge stream—a stream bled off from the process to remove an accumulation of inert or unwanted material that might otherwise build up in the recycle stream (Figure 12.5).

![Figure 12.5 A process with a recycle stream with purge.](image)

Example 39

In the feedstock preparation section of a plant manufacturing natural gasoline, isopentane is removed from butane-free gasoline. Assume for purposes of simplification that the process and components are as shown in Figure E12.5. What fraction of the butane-free gasoline is passed through the isopentane tower? The process is in the steady state and no reaction occurs.
Solution

Basis: 100 kg feed

Overall balances

Total material balance:

\[
\frac{In}{100} = \frac{Out}{S + P}
\]

(a)

Component balance for n-C\textsubscript{3} (tie component)

\[
\frac{In}{100(0.80)} = \frac{Out}{S(0) + P(0.90)}
\]

(b)

Consequently,

\[
P = 100\left(\frac{0.80}{0.90}\right) = 88.9 \text{ kg}
\]

\[
S = 100 - 88.9 = 11.1 \text{ kg}
\]

Balance around isopentane tower:

Let \(x\) be the kg of butane-free gas going to the isopentane tower, and \(y\) be the kg of the n-C\textsubscript{5}H\textsubscript{12} stream leaving the isopentane tower.

Total material balance:

\[
\frac{In}{x} = \frac{Out}{11.1 + y}
\]

(c)

Component balance for n-C\textsubscript{5}

\[
x(0.80) = y
\]

(d)

Consequently, combining (c) and (d) yields \(x = 55.5 \text{ kg}\), or the desired fraction is 0.55.

Another approach to this problem is to make a balance at mixing points 1 and 2.

Balance around mixing point 2:

Material into junction = Material out

Total material: \((100 - x) + y = 88.9\)

Component (iso-C\textsubscript{5}): \((100 - x)(0.20) + 0 = 88.9(0.10)\)

Solving yields \(x = 55.5 \text{ kg as before}\)
Example 40

Figure E12.6 illustrates a steady-state process for the production of methanol. All of the compositions are in mole fractions or percent. The stream flows are in moles.

\[
\text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH}
\]

Note in Figure E12.6 that some CH\textsubscript{4} enters the process, but does not participate in the reaction. A purge stream is used to maintain the CH\textsubscript{4} concentration in the exit from the separator at no more than 3.2 mol\%, and prevent hydrogen buildup as well. The once-through conversion of the CO in the reactor is 18\%.

Compute the moles of recycle, CH\textsubscript{3}OH, and purge per mole of feed, and also compute the purge gas composition.

Solution

The mole fraction of the components in the purge stream have been designated as \(x\), \(y\), and \(z\) for \(\text{H}_2\), \(\text{CO}\), and \(\text{CH}_4\), respectively.

Basis: \(F = 100\) mol

The variables whose values are unknown are \(x\), \(y\), \(z\), \(E\), \(P\), and \(R\).

\[
z = 0.032 \quad \text{(a)}
\]

The implicit mole fraction balance in the recycle stream

\[
x + y + z = 1 \quad \text{(b)}
\]

The overall element balances are (in moles):

\[
\begin{align*}
2\text{H}: & \quad 67.3 + 0.2(2) = E(2) + P(x + 2z) \quad \text{(c)} \\
\text{C}: & \quad 32.5 + 0.2 = E(1) + P(y + z) \quad \text{(d)} \\
\text{O}: & \quad 32.5 = E(1) + P(y) \quad \text{(e)}
\end{align*}
\]

Reactor plus the Separator

\[
\frac{\text{In}}{[32.5 + Ry]} - \frac{\text{Out}}{[y(R + P)]} = \frac{\text{Consumed}}{(32.5 + Ry)(0.18)} \quad \text{(f)}
\]

Equation (a) can be substituted into Equations (b) through (f), and the resulting five equations solved by successive substitution or by using a computer program. The resulting values obtained are (in moles)

\[
\begin{align*}
E & \quad \text{CH}_3\text{OH} \quad 31.25 \\
P & \quad \text{purge} \quad 6.25 \\
R & \quad \text{recycle} \quad 705 \\
x & \quad \text{H}_2 \quad 0.768 \\
y & \quad \text{CO} \quad 0.200 \\
z & \quad \text{CH}_4 \quad 0.032
\end{align*}
\]
Problems

1. How many recycle streams occur in Figure SAT12.1P1?

![Figure SAT12.1P1]

2. The Hooker Chemical Corporation operates a process in Michigan for the purification of HCl. Figure SAT12.1P2 shows the flow sheet for the Hooker process. The streams from the bottoms of the five towers are liquid. The streams from the tops of the towers are gases. HCl is insoluble in the HCB (hexachlorobutadienes). The various stream compositions are shown in Figure SAT12.1P2.

How many recycle streams are there in the Hooker process?

![Figure SAT12.1P2]

3. A ball mill grinds plastic to make a very fine powder. Look at Figure SAT12.2P1.

![Figure SAT12.2P1]

At the present time 10,000 kg of powder are produced per day. You observe that the process (shown by the solid lines) is inefficient because 20% of the feed is not recovered as powder—it goes to waste.
You make a proposal (designated by the dashed lines) to recycle the uncollected material back to the feed so that it can be remilled. You plan to recycle 75% of the 200 kg of uncollected material back to the feed stream. If the feed costs $1.20/kg, how much money would you save per day while producing 10,000 kg of fine powder?

4. Sea water is to be desalinized by reverse osmosis using the scheme indicated in Figure SAT12.2P2. Use the data given in the figure to determine: (a) the rate of waste brine removal (B); (b) the rate of desalinized water (called potable water) production (P); (c) the fraction of the brine leaving the reverse osmosis cell (which acts in essence as a separator) that is recycled.

5. A material containing 75% water and 25% solid is fed to a granulator at a rate of 4000 kg/hr. The feed is premixed in the granulator with recycled product from a dryer, which follows the granulator (to reduce the water concentration of the overall material fed into the granulator to 50% water, 50% solid). The product that leaves the dryer is 16.7% water. In the dryer, air is passed over the solid being dried. The air entering the dryer contains 3% water by weight (mass), and the air leaving the dryer contains 6% water by weight (mass).
 a. What is the ratio of the recycle to the feed entering the granulator?
 b. What is the rate of air flow to the dryer on a dry basis?

6. Benzene, toluene, and other aromatic compounds can be recovered by solvent extraction with sulfur dioxide (SO\textsubscript{2}). Figure SAT12.2P4 is the process schematic. As an example, a catalytic reformate stream containing 70% benzene and 30% nonbenzene material is passed through the countercurrent extractive recovery scheme shown in Figure SAT12.2P4. 1000 lb of reformate and 3000 lb of SO\textsubscript{2} are fed to the system per hour. The benzene product stream contains 0.15 lb of SO\textsubscript{2} per lb of benzene. The raffinate stream contains all the initially charged nonbenzene material as well as 0.25 lb of benzene per lb of nonbenzene material. The remaining component in the raffinate stream is SO\textsubscript{2}. How many lb of benzene are extracted in the product stream on an hourly basis? How many lb of raffinate are produced per hour?
7. A catalytic dehydrogenation process shown in Figure SAT12.3P1, produces 1, 3 butadiene (C₄H₆) from pure normal butane (C₄H₁₀). The product stream contains 75 mol/hr of H₂ and 13 mol/hr of C₄H₁₀ as well as C₄H₆. The recycle stream is 30% (mol) C₄H₁₀ and 70% (mol) C₄H₆, and the flow is 24 mol/hr.

(a) What are the feed rate, F, and the product flow rate of C₄H₆ leaving the process?
(b) What is the single-pass conversion of butane in the process?

8. Pure propane (C₃H₈) from El Paso is dehydrogenated catalytically in a continuous process to obtain propylene (C₃H₆). All of the hydrogen formed is separated from the reactor exit gas with no loss of hydrocarbon. The hydrocarbon mixture is then fractionated to give a product stream containing 88 mole % propylene and 12 mole % propane. The other stream, which is 70 mole % propane and 30 mole % propylene, is recycled. The one-pass conversion in the reactor is 25%, and 1000 kg of fresh propane are fed per hour. Find (a) the kg of product stream per hour, and (b) the kg of recycle stream per hour.

9. Ethyl ether is made by the dehydration of ethyl alcohol in the presence of sulfuric acid at 140°C:

\[
2\text{C}_2\text{H}_5\text{OH} \rightarrow \text{C}_2\text{H}_5\text{OC}_2\text{H}_5 + \text{H}_2\text{O}
\]

Figure SAT12.3P3 is a simplified process diagram. If 87% conversion of the alcohol fed to the reactor occurs per pass in the reactor, calculate: (a) kilograms per hour of fresh feed, and (b) kilograms per hour of recycle.

10. In the famous Haber process (Figure SAT12.4P1) to manufacture ammonia, the reaction is carried out at pressures of 800 to 1000 atm and at 500 to 600°C using a suitable catalyst. Only a small fraction of the material entering the reactor reacts on one pass, so recycle is needed. Also, because the nitrogen is obtained from the air, it contains almost 1% rare gases (chiefly argon) that do not react. The rare gases would continue to build up in the recycle until their effect on the reaction equilibrium would become adverse. Therefore, a small purge stream is used.
The fresh feed of gas composed of 75.16% H\textsubscript{2}, 24.57% N\textsubscript{2}, and 0.27% Ar is mixed with the recycled gas and enters the reactor with a composition of 79.52% H\textsubscript{2}. The gas stream leaving the ammonia separator contains 80.0 1% H\textsubscript{2} and no ammonia. The product ammonia contains no dissolved gases. Per 100 moles of fresh feed:

a. How many moles are recycled and purged?

b. What is the percent conversion of hydrogen per pass?

11. Figure SAT12.4P2 shows a simplified process to make ethylene dichloride (C\textsubscript{2}H\textsubscript{4}C\textsubscript{1}\textsubscript{2}). The feed data have been placed on the figure. Ninety percent conversion of the C\textsubscript{2}H\textsubscript{4} occurs on each pass through the reactor. The overhead stream from the separator contains 98% of the Cl\textsubscript{2} entering the separator, 92% of the entering C\textsubscript{2}H\textsubscript{4}, and 0.1% of the entering C\textsubscript{2}H\textsubscript{4}C\textsubscript{1}\textsubscript{2}. Five percent of the overhead from the separator is purged. Calculate (a) the flow rate and (b) the composition of the purge stream.

Answers:

1. 2
2. 5
3. $2250
4. (a) 591 lb/hr; (b) 409 lb/hr; (c) 0.55
5. (a) ratio = 3000 kg of recycle/hr and feed = 7000 kg/hr; (b) air = 85,100 kg/hr
6. (a) benzene extracted: P = 625 lb/hr; (b) raffinate produced: R = 3,281 lb/hr
7. (a) mol/hr C\textsubscript{6}H\textsubscript{6} = 37.5 and F = 50.5 mol/hr; (b) 0.65
8. (a) 960 kg/hr; (b) 3659 kg/hr
9. (a) 1570 kg/hr; (b) 243 kg/hr
10. (a) 890 recycled and 3.2 purged; (b) 9.2% conversion (errors can be caused by loss of significant figures)
11. (a) 1.49 mol/hr; (b) Cl\textsubscript{2}: 0.658; C\textsubscript{2}H\textsubscript{4}: 0.338; C\textsubscript{2}H\textsubscript{4}C\textsubscript{1}\textsubscript{2}: 0.0033.
Chapter Three

Gases, Vapors, Liquids, and Solids

- **Property** is meaning any measurable characteristic of a substance, such as **pressure**, **volume**, or **temperature**, or a characteristic that can be calculated or deduced, such as internal energy.

- **State and Equilibrium** A system will possess a unique set of properties, such as temperature, pressure, density, and so on, at a given time, and thus is said to be in a particular state. A change in the state of the system results in a change in at least one of its properties.

- By **equilibrium** we mean a state in which there is no tendency toward spontaneous change. When a system is in equilibrium with another system, or the surroundings, it will not change its state unless the other system, or the surroundings, also changes.

- A **phase** is defined as a completely homogeneous and uniform state of matter. Liquid water would be a phase; ice would be another phase. Two immiscible liquids in the same container, such as mercury and water, would represent two different phases because the liquids have different properties.

3.1 Ideal Gas Law Calculations

The Ideal Gas Law

Under conditions such that the average distance between the molecules in a substance is great enough to neglect the effect of the intermolecular forces and the volume of the molecules themselves, a gas can be termed an **ideal gas**. More properly, an ideal gas is an imaginary gas that obeys exactly the following relationship

\[
pV = nRT \quad (1)
\]

Where
- \(p \) = absolute pressure of the gas
- \(V \) = total volume occupied by the gas
- \(n \) = number of moles of the gas
- \(R \) = ideal gas constant in appropriate units
- \(T \) = absolute temperature of the gas

Sometimes the ideal gas law is written as

\[
p\hat{V} = RT \quad (1a)
\]

Where \(\hat{V} \) is the specific volume (volume per mole or mass) of the gas.

Table 1 Common Standard Conditions for the Ideal Gas

<table>
<thead>
<tr>
<th>System</th>
<th>(T)</th>
<th>(P)</th>
<th>(\hat{V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>273.15K</td>
<td>101.325 kPa</td>
<td>22.415 m³/kg mol</td>
</tr>
<tr>
<td>Universal scientific</td>
<td>0.0°C</td>
<td>760 mm Hg</td>
<td>22.415 liters/g mol</td>
</tr>
<tr>
<td>Natural gas industry</td>
<td>60.0°F (15.0°C)</td>
<td>14.696 psia (101.325 kPa)</td>
<td>379.4 ft³/lb mol</td>
</tr>
<tr>
<td>American engineering</td>
<td>32°F</td>
<td>1 atm</td>
<td>359.05 ft³/lb mol</td>
</tr>
</tbody>
</table>
Example 1
Calculate the volume, in cubic meters, occupied by 40 kg of CO$_2$ at standard conditions.

Solution

Basis: 40 kg of CO$_2$

\[
\begin{array}{ccc}
40 \text{ kg CO}_2 & 1 \text{ kg mol CO}_2 & 22.42 \text{ m}^3 \text{ CO}_2 \\
44 \text{ kg CO}_2 & 1 \text{ kg mol CO}_2 & = 20.4 \text{ m}^3 \text{ CO}_2 \text{ at S.C.}
\end{array}
\]

Example 2
Find the value for the universal gas constant R for the following combinations of units: For 1 g mol of ideal gas when the pressure is in atm, the volume in cm3, and the temperature in K.

Solution

At standard conditions we will use the approximate values

\[
p = 1 \text{ atm} \quad V = 22,415 \text{ cm}^3/\text{g mol} \quad T = 273.15 \text{ K}
\]

\[
R = \frac{pV}{T} = \frac{1 \text{ atm}}{273.15 \text{ K}} \cdot \frac{22,415 \text{ cm}^3}{1 \text{ g mol}} = 82.06 \text{ (cm}^3\text{ atm)/(g mol K)}
\]

In many processes going from an initial state to a final state, you can use the ratio of ideal gas law in the respective states and eliminate R as follows (the subscript 1 designates the initial state, and the subscript 2 designates the final state)

\[
\frac{p_1V_1}{p_2V_2} = \frac{n_1RT_1}{n_2RT_2}
\]

or

\[
\left(\frac{p_1}{p_2}\right)\left(\frac{V_1}{V_2}\right) = \left(\frac{n_1}{n_2}\right)\left(\frac{T_1}{T_2}\right)
\]

Example 3
Calculate the volume occupied by 88 lb of CO$_2$ at a pressure of 32.2 ft of water and at 15°C

Solution

The final volume can be calculated via Equation 13.2 in which both R and n_1/n_2 cancel out:
\[V_2 = V_1 \left(\frac{p_1}{p_2} \right) \left(\frac{T_2}{T_1} \right) \]

Assume that the pressure is absolute pressure.

\[\text{At S.C. (state 1)} \]
\[
\begin{align*}
p &= 33.91 \text{ ft H}_2\text{O} \\
T &= 273 \text{ K}
\end{align*}
\]

\[\text{At state 2} \]
\[
\begin{align*}
p &= 32.2 \text{ ft H}_2\text{O} \\
T &= 273 + 15 = 288 \text{ K}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Basis: 88 lb of CO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 lb CO(_2)</td>
</tr>
<tr>
<td>44 lb CO(_2)</td>
</tr>
<tr>
<td>1 lb mol CO(_2)</td>
</tr>
</tbody>
</table>

Another solution

The same results can be obtained by using Eq. 1

\[R = \frac{pV}{T} \]

At S.C.,

\[p = 33.91 \text{ ft H}_2\text{O} \quad V = 359 \text{ ft}^3/\text{lb mol} \quad T = 273 \text{K} \]

\[R = \frac{33.91}{273} \cdot \frac{359}{273} = 44.59 \quad (\text{ft H}_2\text{O})(\text{ft}^3) \quad (\text{lb mol})(\text{K}) \]

Basis: 88 lb of CO\(_2\)

\[V = \frac{nRT}{p} = \frac{88 \text{ lb CO}_2}{44 \text{ lb CO}_2} \cdot \frac{44.59 \text{ (ft H}_2\text{O})(\text{ft}^3)}{(\text{lb mol})(\text{K})} \cdot \frac{288 \text{ K}}{32.2 \text{ ft H}_2\text{O}} \]

\[= 798 \text{ ft}^3 \text{ CO}_2 \text{ at 32.2 ft H}_2\text{O and 15°C} \]

The Gas Density

The **density of a gas** is defined as the mass per unit volume and can be expressed in kilograms per cubic meter, pounds per cubic foot, grams per liter, or other units

Example 4

What is the density of N\(_2\) at 27°C and 100 kPa in SI units?
Solution

Basis: 1 m³ of N₂ at 27°C and 100 kPa

\[
\begin{array}{cccc}
1 & 273 & 100 & 1 \\
\hline
300 & 101.3 & 22.4 & 1 \\
\end{array}
\]

\[
\frac{28}{1} = 1.123 \text{ kg/m³}
\]

density = 1.123 kg/m³ of N₂ at 27°C (300 K) and 100 kPa

The Gas Specific Gravity

The specific gravity of a gas is usually defined as the ratio of the density of the gas at a desired temperature and pressure to that of air (or any specified reference gas) at a certain temperature and pressure.

Example 5

What is the specific gravity of N₂ at 80°F and 745 mm Hg compared to air at 80°F and 745 mm Hg?

Solution

Basis: 1 ft³ of air at 80°F and 745 mm Hg

\[
\begin{array}{cccc}
1 & 492 & 745 & 29 \\
\hline
540 & 760 & 359 & \\
\end{array}
\]

\[
= 0.0721 \text{ lb/ft}^3 \text{ at 80°F and 745 mm Hg}
\]

Basis: 1 ft³ of N₂ at 80°F and 745 mm Hg

\[
\begin{array}{cccc}
1 & 492 & 745 & 28 \\
\hline
540 & 760 & 359 & \\
\end{array}
\]

\[
= 0.0697 \text{ lb/ft}^3 \text{ at 80°F and 745 mm Hg}
\]

\[
(\text{sp. gr.})_{N_2} = \frac{0.0697}{0.0721} = 0.967 \frac{\text{lb N}_2/\text{ft}^3 \text{ at 80°F, 745 mm Hg}}{\text{lb air/ft}^3 \text{ air at 80°F, 745 mm Hg}}
\]

Note: for gases at the same temperature and pressure, the specific gravity is just the ratio of the respective molecular weights. Let A be one gas and B be another.

\[
\rho \frac{1}{\rho} = RT
\]

Thus

\[
\text{sp. gr.} = \frac{\rho_A}{\rho_B} = \frac{p_A}{p_B} \left(\frac{\text{mol. wt. A}}{\text{mol. wt. B}} \right) \left(\frac{T_B}{T_A} \right)
\]

Ideal Gas Mixtures and Partial Pressure

The partial pressure of a gas; defined by Dalton, \(p_i\), namely the pressure that would be exerted by a single component in a gaseous mixture if it existed by itself in the same volume as occupied by the mixture and at the same temperature of the mixture is

\[
p_iV_{\text{total}} = n_iRT_{\text{total}}
\]

Where \(p_i\) is the partial pressure of component \(i\). If you divide Eq. (4) by Eq. (1), you find that
Where y_i is the mole fraction of component i. Can you show that Dalton’s law of the summation of partial pressures is true using Eq. 13.5?

Although you cannot measure the partial pressure directly with an instrument, you can calculate the value from Eqs. 5 and/or 6.

Example 6
A flue gas analyzes 14.0% CO$_2$, 6.0% O$_2$, and 80.0% N$_2$. It is at 400°F and 765.0 mm Hg pressure. Calculate the partial pressure of each component.

Solution
Use Eq. (13.5) $p_i = p_T y_i$

Basis: 1.00 kg (or lb) mol flue gas

<table>
<thead>
<tr>
<th>Component</th>
<th>kg (or lb) mol</th>
<th>p (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>0.140</td>
<td>107.1</td>
</tr>
<tr>
<td>O$_2$</td>
<td>0.060</td>
<td>45.9</td>
</tr>
<tr>
<td>N$_2$</td>
<td>0.800</td>
<td>612.0</td>
</tr>
<tr>
<td>Total</td>
<td>1.000</td>
<td>765.0</td>
</tr>
</tbody>
</table>

On the basis of 1.00 mole of flue gas, the mole fraction y of each component, when multiplied by the total pressure, gives the partial pressure of that component.

Real Gas Relationships
- We have said that at room temperature and pressure many gases can be assumed to act as *ideal gases*.
- However, for some gases under normal conditions, and for most gases under conditions of high pressure, values of the gas properties that you might obtain using the ideal gas law would be at wide variance with the experimental evidence. You might wonder exactly how the behavior of real gases compares with that calculated from the ideal gas laws.
- In Fig. 3.2 you can see how the (pV) product of several gases deviates from that predicted by the ideal gas laws as the pressure increases substantially. Thus it is clear that we need some way of computing the p-V-T properties of a gas that is not ideal, i.e. the real gas.
Figure 1 Deviation of real gases from the ideal gas law at high pressures.

Three methods of getting or predicting real gas properties in lieu of having experimental data:

1. Compressibility charts
2. Equations of state
3. Estimated properties

Critical State, Reduced Parameters, and Compressibility

- The critical state for the gas-liquid transition is the set of physical conditions at which the density and other properties of the liquid and vapor become identical.
- The law of corresponding states expresses the idea that in the critical state all substances should behave alike.
- Refer to Figure 2 in which the states of water are illustrated. As the temperature increases, the density of the liquid and vapor approach each other until finally at 374.14 °C, the values are the same.
The regions of existence of solid, liquid, gaseous, and supercritical water. At the triple point solid, liquid, and gas are all in equilibrium.

- A supercritical fluid, that is, a compound in a state above the critical point, combines some of the properties of both gases and liquids.
- Another set of terms with which you should immediately become familiar are the reduced parameters. These are corrected, or normalized, conditions of temperature, pressure, and volume and are expressed mathematically as

\[
T_r = \frac{T}{T_c}
\]

\[
p_r = \frac{p}{p_c}
\]

\[
V_r = \frac{V}{V_c}
\]

Compressibility Factor (z)

One common way is to modify the ideal gas law by inserting an adjustable coefficient \(z \), the compressibility factor, a factor that compensates for the nonideality of the gas. Thus, the ideal gas law becomes a real gas law, a generalized equation of state.

\[
p \ V = z \ n \ R \ T
\]

Figure 3 shows the generalized compressibility charts or \(z \)-factor chart prepared by Nelson and Obert. These charts are based on 30 gases.

Figure 3 (e) is a unique chart that, by having several parameters plotted simultaneously on it, helps you avoid trial-and-error solutions or graphical solutions of real gas problems. One of these helpful parameters is the ideal reduced volume defined as

\[
V_{ri} = \frac{\dot{V}}{\dot{V}_i}
\]
V_{ci} the ideal critical volume (not the experimental value of the critical volume), or

$$\hat{V}_{ci} = \frac{RT_c}{p_c}$$

Both V_{ri} and \hat{V}_{ci} are easy to calculate since T_c and p_c are presumed known.

Figure 3(a) Generalized Compressibility Chart, Very Low Reduced Pressure.
Figure 3(b) Generalized Compressibility Chart, Low Pressure.
Figure 3(c) Generalized Compressibility Chart, Medium Pressure.

Figure 3(d) Generalized Compressibility Chart, High Pressure.
Figure 3 (e) Generalized Compressibility Chart, with Special Scales.

Note
The value $z = 1$ represents **ideality**, and the value $z = 0.27$ is the compressibility factor at the **critical point**.

Example 7
In spreading liquid ammonia fertilizer, the charges for the amount of NH$_3$ are based on the time involved plus the pounds of NH$_3$ injected into the soil. After the liquid has been spread, there is still some ammonia left in the source tank (volume = 120 ft3), but in the form of a gas. Suppose that your weight tally, which is obtained by difference, shows a net weight of 125 lb of NH$_3$ left in the tank as a gas at 292 psig. Because the tank is sitting in the sun, the temperature in the tank is 125°F. Your boss complains that his calculations show that the specific volume of the gas is 1.20 ft3/lb and hence that there are only 100 lb of NH$_3$ in the tank. Could he be correct? See Figure E 3.7.

Solution
Apparently, your boss used the ideal gas law in getting his figure of 1.20 ft3/lb of NH$_3$ gas:
However, he should have used the **compressibility factor**, because NH\textsubscript{3} does not behave as an **ideal gas** under the observed conditions of **temperature and pressure**. Let us again compute the mass of gas in the tank this time using

\[pV = znRT \]

From Appendix D:

\[T_c = 405.5K \approx 729.9R \]

\[p_c = 111.3 \text{ atm} = 1636 \text{ psia} \]

Then, since \(z \) is a function of \(T_c \) and \(p_c \),

\[T_i = \frac{T}{T_c} = \frac{585^\circ R}{729.9^\circ R} = 0.801 \]

\[p_i = \frac{p}{p_c} = \frac{306.7 \text{ psia}}{1636 \text{ psia}} = 0.187 \]

From the Nelson and Obert chart, Fig. 13.3 (b), you can read \(z = 0.855 \). Now \(\hat{V} \) can be calculated as

\[\hat{V} = \frac{1.20 \text{ ft}^3/\text{lb}}{\text{ideal}} \times \frac{0.855}{1} = 1.03 \text{ ft}^3/\text{lb} \text{ NH}_3 \]

\[\frac{1 \text{ lb NH}_3}{1.03 \text{ ft}^3} \times 120 \text{ ft}^3 = 117 \text{ lb NH}_3 \]

Note: Certainly 117 lb is a more realistic figure than 100 lb, and it is easily possible to be in error by 8 lb if the residual weight of NH\textsubscript{3} in the tank is determined by difference. As a matter of interest you might look up the specific volume of NH\textsubscript{3} at the conditions in the tank in a handbook. You would find that \(\hat{V} = 0.973 \text{ ft}^3/\text{lb} \), and hence the compressibility factor calculation yielded a volume with an error of only about 4%.

Example 13.8

Liquid oxygen is used in the steel industry, in the chemical industry, in hospitals, as rocket fuel, and for wastewater treatment as well as many other applications. In a hospital a tank of 0.0284-m3 volume is filled with 3.500 kg of liquid O\textsubscript{2} that vaporized at -25°C. Will the pressure in the tank exceed the safety limit of the tank (104 kPa)?

Solution

Basis: 3.500 kg O\textsubscript{2}

We know from Appendix D that

\[T_c = 154.4 \text{ K} \]

\[p_c = 49.7 \text{ atm} \rightarrow 5.035 \text{ kPa} \]
From the Nelson and Obert chart \[\text{Fig. 3 (e)} \], the pressure of 100 atm will not be exceeded. Even at room temperature the pressure will be less than \(10^4\) kPa.

13.2.2 Equations of State

Equations of state relate the \(p-V-T\) properties of a pure substance (or mixtures) by theoretical or empirical relations.

The simplest example of an equation of state is the ideal gas law itself. Table 13.2 lists a few of the commonly used equations of state (from among the hundreds that have been proposed) that involve two or more coefficients.

TABLE 3.2 Equations of State (for 1 Mole)

\[
\hat{V} \text{ (molal volume)} = \frac{0.0284 \text{ m}^3}{3.500 \text{ kg}} \left| \frac{32 \text{ kg}}{1 \text{ kg mol}} \right| = 0.260 \text{ m}^3/\text{kg mol}
\]

Note that the *molal volume must* be used in calculating \(V_{r1}\) since \(\hat{V}_{c_i}\) is a volume per mole.

\[
\hat{V}_{c_i} = \frac{RT_c}{p_c} = \frac{8.313 \text{ (m}^3\text{ (kPa)}}{(\text{kg mol})(\text{K})} \left| \frac{154.4 \text{ K}}{5,035 \text{ kPa}} \right| = 0.255 \text{ m}^3/\text{kg mol}
\]

Then

\[
V_{r1} = \frac{\hat{V}}{\hat{V}_{c_i}} = \frac{0.260}{0.255} = 1.02
\]

Now we know two parameters, \(V_{r1}\) and,

\[
T_r = \frac{248 \text{ K}}{154.4 \text{ K}} = 1.61
\]

From the Nelson and Obert chart [Fig. 3 (e)],

\[
p_r = 1.43
\]

Then

\[
p = p_r p_c = 1.43 \times 5,035 = 7200 \text{ kPa}
\]

The pressure of 100 atm will not be exceeded. Even at room temperature the pressure will be less than \(10^4\) kPa.
Van der Waals:
\[
(p + \frac{a}{V^2}) (\frac{1}{V} - b) = RT
\]
\[
a = \frac{27}{64} R^2 T^2
\]
\[
b = \frac{1}{8} \frac{RT_e}{P_e}
\]

Diotici:
\[
p = \frac{RT}{\hat{V}} - b \quad e^{-a/\hat{V}} R T
\]

Berthelot:
\[
p = \frac{RT}{\hat{V}} - b - \frac{a}{T \hat{V}^2}
\]

Redlich-Kwong:
\[
\left[p + \frac{a}{T^{1/2} \hat{V} (\hat{V} + b)} \right] (\hat{V} - b) = RT
\]
\[
a = 0.4278 \frac{R^2 T^2}{\hat{V}^2}
\]
\[
b = 0.0867 \frac{RT_e}{\hat{V}^2}
\]

Kammerlingh-Onnes:
\[
p \hat{V} = RT \left(1 + \frac{B}{\hat{V}} + \frac{C}{\hat{V}^2} + \ldots \right)
\]
\[
a = 0.45724 \left(\frac{R^2 T^2}{\hat{V}^2} \right)
\]

Holborn:
\[
p \hat{V} = RT (1 + \hat{V} + C \hat{V}^2 + \ldots)
\]
\[
b = 0.07780 \left(\frac{RT_e}{\hat{V}^2} \right)
\]

Beattie-Bridgeman:
\[
p \hat{V} = RT + \frac{B}{\hat{V}} + \frac{C}{\hat{V}^2} + \frac{\delta}{\hat{V}^3}
\]
\[
\beta = RT B_0 - A_0 - \frac{R C}{T^3}
\]
\[
\gamma = -RT B_0 b + a A_0 - \frac{R B_0 c}{T^2}
\]
\[
\delta = \frac{R B_0 c}{T^3}
\]

Benedict-Webb-Rubin:
\[
p \hat{V} = RT + \frac{B}{\hat{V}} + \frac{C}{\hat{V}^2} + \frac{\eta}{\hat{V}^3} + \frac{w}{\hat{V}^4}
\]
\[
\beta = RT B_0 - A_0 - \frac{C_0}{T^3}
\]
\[
\sigma = b R T - a + \frac{\alpha}{T^2} \exp \left(-\frac{\gamma}{\hat{V}^2} \right)
\]
\[
\eta = c \gamma \exp \left(-\frac{\gamma}{\hat{V}^2} \right)
\]
\[
w = a \alpha
\]

Peng-Robinson:
\[
p = \frac{RT}{\hat{V} - b} - \frac{a \alpha}{\hat{V} (\hat{V} + b) + b (\hat{V} - b)}
\]
\[
a = 0.45724 \left(\frac{RT^2}{\hat{V}^2} \right)
\]
\[
b = 0.07780 \left(\frac{RT_e}{\hat{V}^2} \right)
\]

\[
\alpha = 1 + \kappa (1 - \frac{T^2}{T_e^2})^\frac{3}{2}
\]
\[
\kappa = 0.37464 + 1.54226 \omega - 0.26992 \omega^2
\]
\[
\omega = \text{acentric factor (see p. 275)}
\]

• Van der Waals equation can easily be solved explicitly for \((p)\) as follows:

\[
p = \frac{nRT}{V - nb} - \frac{n^2 a}{V^2}
\]

However, if you want to solve for \(V\) (or \(n\)), you can see that the equation becomes cubic in \(V\) (or \(n\)):

\[
f(V) = V^3 - \left(nb + \frac{nRT}{p} \right) V^2 + \frac{n^2 a V}{p} - \frac{n^3 ab}{p} = 0
\]

And can have multiple roots. We want a positive real root. Computer programs can solve nonlinear equations and can be used to solve for \(V\) if you have a reasonable initial guess for \(V\), say from the ideal gas law.

Example 13.9

A cylinder 0.150 m\(^3\) in volume containing 22.7 kg of propane C\(_3\)H\(_8\) stands in the hot sun. A pressure gauge shows that the pressure is 4790 kPa gauge. What is the temperature of the propane in the cylinder? Use van der Waals equation.
3.2.3 Gaseous Mixtures

In Kay's method, pseudocritical values for mixtures of gases are calculated on the assumption that each component in the mixture contributes to the pseudocritical value in the same proportion as the number of moles of that component. Thus the pseudocritical values are computed as follows:

\[p'_c = p'_c A y_A + p'_c B y_B + \ldots \]

(8a)

\[T'_c = T'_c A y_A + T'_c B y_B + \ldots \]

(8b)

Where \(p'_c \) = pseudocritical pressure and \(T'_c \) = pseudocritical temperature. (It has also been found convenient in some problems to calculate similarly a weighted pseudo-ideal-critical volume \(V'_c \).)

Then the respective pseudo-reduced values are

\[p'_r = \frac{p}{p'_c} \]

\[T'_r = \frac{T}{T'_c} \]
Example 10
A gaseous mixture has the following composition (in mole percent):
Methane, \(\text{CH}_4 \) \(20 \)
Ethylene, \(\text{C}_2\text{H}_4 \) \(30 \)
Nitrogen, \(\text{N}_2 \) \(50 \)
at 90 atm pressure and 100°C. Compare the volume per mole as computed by the methods of:
(a) the perfect gas law
(b) the pseudoreduced technique (Kay’s method)

Solution
Basis: 1 g mol of gas mixture

Additional data needed are:

<table>
<thead>
<tr>
<th>Component</th>
<th>(T_c) (K)</th>
<th>(p_c) (atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_4)</td>
<td>191</td>
<td>45.8</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_4)</td>
<td>283</td>
<td>50.5</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>126</td>
<td>33.5</td>
</tr>
</tbody>
</table>

\[
R = 82.06 \frac{(\text{cm}^3)(\text{atm})}{(\text{g mol})(\text{K})}
\]

(a) Perfect gas law:

\[
\hat{V} = \frac{RT}{p} = \frac{l(82.06)(373)}{90} = 340 \text{ cm}^3 \text{ at 90 atm and 373 K}
\]

(b) According to Kay’s method, we first calculate the pseudocritical values for the mixture

\[
\begin{aligned}
\hat{p}_c &= \hat{p}_{cA} y_A + \hat{p}_{cB} y_B + \hat{p}_{cC} y_C = (45.8)(0.2) + (50.5)(0.3) + (33.5)(0.5) \\
&= 41.2 \text{ atm}
\end{aligned}
\]

\[
\begin{aligned}
\hat{T}_c &= \hat{T}_{cA} y_A + \hat{T}_{cB} y_B + \hat{T}_{cC} y_C = (191)(0.2) + (283)(0.3) + (126)(0.5) \\
&= 186 \text{ K}
\end{aligned}
\]

Then we calculate the pseudo-reduced values for the mixture

\[
\begin{aligned}
\hat{p}' &= \frac{p}{p_c} = \frac{90}{41.2} = 2.18, \\
\hat{T}' &= \frac{T}{T_c} = \frac{373}{186} = 2.01
\end{aligned}
\]

With the aid of these two parameters we can find from Figure 13.3(c) \(z = 0.965 \). Thus

\[
\hat{V} = \frac{zRT}{p} = \frac{0.965(1)(82.06)(373)}{90} = 328 \text{ cm}^3 \text{ at 90 atm and 373 K}
\]
Note
In instances in which the temperature or pressure of a gas mixture is unknown, to avoid a trial – and – error solution using the generalized compressibility charts, you can compute the pseudocritical ideal volume and a **pseudoreduced ideal reduced** volume \(V'_{ri} \) thus

\[
\hat{V}'_{ri} = \frac{RT'}{p'} \quad \text{and} \quad \hat{V}'_{ri} = \frac{V}{V'_{ri}}
\]

\(\hat{V}'_{ri} \) can be used in lieu of \(p' \) or \(T' \) in the compressibility charts.

Vapor Pressure and Liquids

- The terms *vapor* and *gas* are used very loosely. From now on, the word *vapor* will be reserved to describe a gas below its critical point in a process in which the phase change is of primary interest, while the word *gas* or *noncondensable gas* will be used to describe a gas above the critical point or a gas in a process in which it cannot condense.

- If the vapor and liquid of a pure component are in equilibrium, then the **equilibrium pressure** is called the **vapor pressure** (see Figure 13.4).

![Figure 13.4 Vapor-pressure curve for water.](image)

- Any substance has an infinite number of **boiling points**, but by custom we say the **“normal” boiling point** is the temperature at which boiling takes place under a pressure of 1 atm (101.3 kPa, 760 mm Hg). (see Figure 13.5)
When the solid passes directly into the vapor phase without first melting to become a liquid (line J-K as opposed to line L-M-N-O in Figure 13.4) it is said to **sublime**.

![Chemical Engineering principles - First Year](image)

Another new term you will find used frequently is the word **quality**. A wet vapor consists of saturated vapor and saturated liquid in equilibrium. The **mass fraction of vapor** is known as the **quality** \(x \).

Change of Vapor Pressure with Temperature

You can see from Figure 13.4 that the function of \(\rho^* \) versus \(T \) is not a linear function (except as an approximation over a very small temperature range).

We will use the **Antoine equation** — it has sufficient accuracy for our needs:

\[
\ln \rho^* = A - \frac{B}{C + T}
\]

(9)

Where \(A, B, C = \) constants different for each substance \(T = \) temperature, K
Example 11
Calculate the vapor pressure of benzene at 50°C using the Antoine Equation. Also estimate the normal boiling point of benzene (the vapor pressure at 1 atm).

Solution

Antoine Equation
\[
\ln(p^*) = A - \frac{B}{C + T}
\]

From Appendix G in the text the coefficients are
Benzene:
\[
A = 15.9008 \quad T = K \quad B = 2788.51 \quad p^* = \text{mmHg} \quad C = -52.36
\]

a. Vapor Pressure of benzene at 50°C
\[
\ln(p^*) = 15.9008 - \frac{2788.51}{-52.36 + (50 + 273)}
\]
\[
p^* = 270 \text{ mmHg abs}
\]

b. At the boiling point the vapor pressure is 1 atm (760 mmHg abs.)
\[
\ln(760) = 15.9008 - \frac{2788.51}{-52.36 + T}
\]
Solving, \(T = 353.3K\)

Liquid Properties

Often making density a linear function of temperature that is independent of pressure provides sufficiently accurate predictions

\[
\rho = \rho_o - \beta (T - T_o)
\]

Where \(\rho_o\) and \(\beta\) are constants and \(\rho\) is the density of the liquid. Most liquids can be considered to be incompressible, that is, their density is independent of pressure.

For compounds with like molecular structures, such as hydrocarbons of similar molecular weight, called ideal liquids, the density of a liquid mixture can be approximated by assuming that the weighted specific volumes are additive:

\[
\hat{V}_{\text{average}} = x_1 \hat{V}_1 + x_2 \hat{V}_2 + \cdots x_n \hat{V}_n = \sum_{i=1}^{n} x_i \hat{V}_i
\]

Where \(n\) is the number of components in the mixture. For nonideal liquids or solids dissolved in liquids, experimental data or estimation techniques described in many of the references, as the specific volumes are not additive.

Saturation

Figure below shows that the volume of the air plus the water vapor increases until the air is saturated with water vapor, after which stage the volume remains constant.
Evaporation of water at constant pressure and temperature of 65°C

Assuming that the ideal gas law applies to both air and water vapor with excellent precision, we can say that the following relations hold at saturation:

\[
\frac{p_{\text{air}}V}{p_{\text{H}_2\text{O}}V} = \frac{n_{\text{air}}RT}{n_{\text{H}_2\text{O}}RT}
\]

or

\[
\frac{p_{\text{air}}}{p_{\text{H}_2\text{O}}} = \frac{n_{\text{air}}}{n_{\text{H}_2\text{O}}} = \frac{P_{\text{air}}}{P_{\text{total}} - P_{\text{air}}}
\]

in a volume \(V \) at temperature \(T \).

Example 12

What is the minimum number of cubic meters of dry air at 20°C and 100 kpa necessary to evaporate 6.0 kg of ethyl alcohol if the total pressure remains constant at 100 kpa and the temperature remains 20°C? Assume that the air is blown through the alcohol to evaporate it in such a way that the exit pressure of the air alcohol mixture is at 100 kPa. (Given: \(p^*_{\text{alcohol}} \) at 20°C = 5.93 kPa, mol. wt. ethyl alcohol = 46.07).

Solution

See Figure E13.12. Assume that the process is isothermal.

Figure E13.12

Basis: 6 kg of alcohol

\[
\frac{P_{\text{air}}}{P_{\text{total}} - P_{\text{alcohol}}} = \frac{n_{\text{alcohol}}}{n_{\text{air}}}
\]

\[
P_{\text{air}} = P_{\text{total}} - P_{\text{alcohol}} = (100 - 5.93) \text{ kPa} = 94.07 \text{ kPa}
\]

<table>
<thead>
<tr>
<th>6.0 kg alcohol</th>
<th>1 kg mol alcohol</th>
<th>(\frac{94.07 \text{ kg mol air}}{5.93 \text{ kg mol alcohol}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.07 kg alcohol</td>
<td>(\frac{94.07 \text{ kg mol air}}{5.93 \text{ kg mol alcohol}})</td>
<td></td>
</tr>
</tbody>
</table>

\[
V_{\text{air}} = \frac{m_{\text{air}}}{\rho} = \frac{2.07 \text{ kg mol air}}{8.314 \text{ (kg mol)(m³) / (kg mol)(K)}} = 50.3 \text{ m³ at 20°C and 100 kPa}
\]
Another way to view this problem is to say that the final volume contains

\[V \text{ m}^3 \text{ of alcohol at 5.93 kPa and 20°C} \]
\[V \text{ m}^3 \text{ of air at 94.07 kPa and 20°C} \]
\[V \text{ m}^3 \text{ of air plus alcohol at 100 kPa and 20°C} \]

Thus, the volume could be calculated from the information about the alcohol

\[
V_{\text{alcohol}} = \left(\frac{6}{46.07}\right) \times 8.314 \times \frac{293}{5.93} = 53.5 \text{ m}^3 \text{ at 20°C and 5.93 kPa}
\]
\[
= V_{\text{air}} \text{ at 94.07 kPa and 20°C}
\]
\[
V_{\text{air}} = 53.5 \text{ m}^3 \times \frac{94.07}{100} = 50.3 \text{ m}^3 \text{ at 100 kPa and 20°C}
\]

Vapor-Liquid Equilibria for Multicomponent Systems

In two-phase vapor-liquid mixture at equilibrium, a component in one phase is in equilibrium with the same component in the other phase. The equilibrium relationship depends on the temperature, pressure, and composition of the mixture. Figure 13.7 illustrates two cases, one at constant pressure and the other at constant temperature.

Figure 13.7 Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Henry's law. Used primarily for a component whose mole fraction approaches zero, such as a dilute gas dissolved in as liquid:

\[
p_i = H_i x_i
\]

Where \(p_i \) is the pressure in the gas phase of the dilute component at equilibrium at some temperature, and \(H_i \) is the Henry's law constant. Note that in the limit where \(x_i \equiv 0 \), \(p_i \equiv 0 \). Values of \(H \) can be found in several handbooks.

Note that

\[
y_i = \frac{p_i}{P_{\text{tot}}} = \frac{H_i x_i}{P_{\text{tot}}}
\]

And since \(H_i \) is roughly independent of \(P_{\text{tot}} \), the higher the total pressure, the larger \(x_i \).
Raoult’s law. Used primarily for a component whose mole fraction approaches unity or for solutions of components quite similar in chemical nature, such as straight chain hydrocarbons. Let the subscript \(i\) denote the component, \(p_i\) be the partial pressure of component \(i\) in the gas phase, \(y_i\) be the gas-phase mole fraction, and \(x_i\) be the liquid-phase mole fraction. Then:

Note that in the limit where \(x_i \equiv 1\), \(p_i \equiv p_i^*\):

\[
p_i = p_i^* x_i
\]

(13)

Note that in the limit where \(x_i \equiv 1\), \(p_i \equiv p_i^*\).

Equilibrium constant \(K_i\) is defined using Eq. (13.13) as follows by assuming that **Dalton’s law** applies to the gas phase (\(p_i = p_i y_i\)):

\[
K_i = \frac{y_i}{x_i} = \frac{p_i^*}{p_{\text{tot}}}
\]

(14)

Equation (14) gives reasonable estimates of \(K_i\) values at low pressures for components well below their critical temperatures, but yields values too large for components above their critical temperatures, at high pressures, and/or for polar compounds.

Bubble Point Temperature

Bubble point: The temperature at which a liquid just starts to vaporize (See Figure 13.4).

\(\blacklozenge\) To calculate the bubble point temperature (given the total pressure and liquid composition), you can write Eq. (13.14) as \(y_i = K_i x_i\) and you know that \(\sum y_i = 1\) in the vapor phase.

\[
1 = \sum_{i=1}^{n} K_i x_i
\]

(15)

In which the \(K\)'s are functions of solely the temperature and \(n\) is the number of components. For an ideal solution:

\[
p_{\text{tot}} = \sum_{i=1}^{n} p_i^{*y_i}
\]

(16)

And you might use **Anionic’s equation** for \(p_i^{*y}\). Once the bubble point temperature is determined, the vapor composition can be calculated from

\[
y_i = \frac{p_i^{*y_i} x_i}{p_{\text{tot}}}
\]

(17)

Dew Point Temperature

Dew Point: The temperature, at which the vapor just begins to condense at specified pressure, namely temperature values along the vapor pressure curve (See Figure 13.4).

\(\blacklozenge\) To calculate the dew point temperature (given the total pressure and vapor composition), you can write Eq. (13.14) as \(x_i = y_i / K_i\) and you know \(\sum x_i = 1\) in the liquid phase. Consequently, you want to solve the equation
\[I = \sum_{i=1}^{n} \frac{y_i}{K_i} \]

In which the \(K \)'s are function of temperature as explained for the bubble point temperature calculation. For an ideal solution,

\[I = p_{\text{tot}} \sum_{i=1}^{n} \frac{y_i}{p_i^*} \]

Example 13

A gas containing nitrogen, benzene, and toluene is in equilibrium with 40 mole% benzene and 60 mole% toluene liquid mixtures at 100 °C and 10 atm. Estimate the gas phase composition (mole fractions) using Raoult’s law.

<table>
<thead>
<tr>
<th>Antoine equation constants</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Pressure (mm Hg)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>15.9008</td>
<td>2788.51</td>
<td>-52.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>16.0137</td>
<td>3096.52</td>
<td>-53.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution

\[\ln p^* = A - \frac{B}{C + T} \Rightarrow p_B^* = \text{Exp}\left[15.9008 - \frac{2788.51}{-52.36 + 373}\right] = 1344.9 \text{ mm Hg} \]

\[p_T^* = \text{Exp}\left[16.0137 - \frac{3096.52}{-53.67 + 373}\right] = 553.8 \text{ mm Hg} \]

Raoult’s law \(p_i = p_i^* x_i \) and \(p_i = y_i p_T \)

\[y_B p_T = x_B p_B^* \Rightarrow y_B = \frac{0.4 \times 1344.9}{(10)(760)} = 0.071 \]

\[y_T = \frac{0.6 \times 553.8}{(10)(760)} = 0.044, \quad y_{N_2} = 1 - 0.071 - 0.044 = 0.885 \]

Example 14

Air and liquid water are contained at equilibrium in a closed chamber at 75° C and 760 mm Hg. Calculate the molar composition of the gas phase. \(p_{\text{H}_2\text{O}}^* (75^\circ \text{C}) = 289 \text{ mm Hg} \)

Solution

Since the gas and liquid are in equilibrium, the air must be saturated with water vapor (if it was not, more water would evaporate), so that Raoult’s law may be applied:

\[y_{\text{H}_2\text{O}} = \frac{p_{\text{H}_2\text{O}}^*(75^\circ \text{C})}{P} \]

\[y_{\text{H}_2\text{O}} = \frac{289 \text{ mm Hg}}{760 \text{ mm Hg}} = \frac{0.380}{\text{mol \ H}_2\text{O}} \]

\[y_{\text{dry air}} = 1 - y_{\text{H}_2\text{O}} = \frac{0.620}{\text{mol dry air}} \]
Example 15

Use either Raoult's law or Henry's law to solve the following problems.

1. A gas containing 1.00 mole% ethane is in contact with water at 20.0° C and 20.0 atm. Estimate the mole fraction of dissolved ethane.

2. An equimolar liquid mixture of benzene (B) and toluene (T) is in equilibrium with its vapor at 30.0° C. What are the system pressure and the composition of the vapor?

(Henry's law constant for ethane in water at 20°C as 2.63 x 10^4 atm/mole fraction)

Solution

1. Hydrocarbons normally are relatively insoluble in water, so that the solution of ethane is probably extremely dilute. Let us therefore apply Henry's law.

\[x_{C_2H_6} = \frac{y_{C_2H_6}P}{H_{C_2H_6}} = \frac{(0.0100)(20.0 \text{ atm})}{2.63 \times 10^4 \text{ atm/mole fraction}} = 7.60 \times 10^{-6} \text{ mol C}_2\text{H}_6 \text{ mol} \]

2. Since benzene and toluene are structurally similar compounds, we may apply Raoult's law.

\[
\ln p^* = A - \frac{B}{C + T}
\]

\[
= 6.906 - \frac{1211}{T + 220.8} \quad T = 30^\circ \text{C} \quad p^*_B = 119 \text{ mm Hg}
\]

\[
= 6.9533 - \frac{1343.9}{T + 219.38} \quad T = 30^\circ \text{C} \quad p^*_T = 36.7 \text{ mm Hg}
\]

\[
p_B = x_B p^*_B = (0.500)(119 \text{ mm Hg}) = 59.5 \text{ mm Hg}
\]

\[
p_T = x_T p^*_T = (0.500)(36.7 \text{ mm Hg}) = 18.35 \text{ mm Hg}
\]

\[
P = p_B + p_T = 77.9 \text{ mm Hg}
\]

\[
y_B = \frac{p_B}{P} = 0.764 \text{ mole benzene/mole}
\]

\[
y_T = \frac{p_T}{P} = 0.236 \text{ mole toluene/mole}
\]

Gibb's phase rule

The rule can be applied only to systems in equilibrium.

\[F = C - P + 2 \quad (20) \]

Where

\(F \) = number of degrees of freedom (i.e., the number of independent properties that have to be specified to determine all the intensive properties of each phase of the system of interest).

\(C \) = number of components in the system.

\(P \) = number of phases that can exist in the system; a phase is a homogeneous quantity of material such as a gas, a pure liquid, a solution, or a homogeneous solid.
Example 16
Calculate the number of degrees of freedom (how many additional intensive variables must be specified to fix the system) from the phase rule for the following materials at equilibrium:

(a) Pure liquid benzene.
(b) A mixture of ice and water only.
(c) A mixture of liquid benzene, benzene vapor, and helium gas.
(d) A mixture of salt and water designed to achieve a specific vapor pressure.

What variables might be specified in each case? Solution

\[F = C - P + 2 \]

(a) \(C = 1, P = 1 \), hence \(F = 1 - 1 + 2 = 2 \). The temperature and pressure might be specified in the range in which benzene remains a liquid.

(b) \(C = 1, P = 2 \), hence \(F = 1 - 2 + 2 = 1 \). Once either the temperature or the pressure is specified, the other intensive variables are fixed.

(c) \(C = 2, P = 2 \), hence \(F = 2 - 2 + 2 = 2 \). A pair from temperature, pressure, or mole fraction can be specified.

(d) \(C = 2, P = 2 \), hence \(F = 2 - 2 + 2 = 2 \). Since a particular pressure is to be achieved, you would adjust the salt concentration and the temperature of the solution.

Note in (a) and (b) it would be unlikely that a vapor phase would not exist in practice, increasing \(P \) by 1 and reducing \(F \) by one.

Problems

1. Calculate the volume in \(\text{ft}^3 \) of 10 lb mol of an ideal gas at 68°F and 30 psia.
2. A steel cylinder of volume 2 m\(^3\) contains methane gas (\(\text{CH}_4 \)) at 50°C and 250 kPa absolute. How many kilograms of methane are in the cylinder?
3. What is the value of the ideal gas constant \(R \) to use if the pressure is to be expressed in atm, the temperature in Kelvin, the volume in cubic feet, and the quantity of material in pound moles?
4. Twenty-two kilograms per hour of \(\text{CH}_4 \) are flowing in a gas pipeline at 30°C and 920 mm Hg. What is the volumetric flow rate of the \(\text{CH}_4 \) in m\(^3\) per hour?
5. What is the density of a gas that has a molecular weight of 0.123 kg/kg mol at 300 K and 1000 kPa?
6. What is the specific gravity of \(\text{CH}_4 \) at 70°F and 2 atm compared to air at S.C.?
7. A gas has the following composition at 120°F and 13.8 psia.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2)</td>
<td>2</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>79</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_6)</td>
<td>19</td>
</tr>
</tbody>
</table>

(a) What is the partial pressure of each component?

(b) What is the volume fraction of each component?
8. (a) If the C_2H_6 were removed from the gas in problem 7, what would be the subsequent pressure in the vessel?

(b) What would be the subsequent partial pressure of the N_2?

9. What is the ideal critical volume? What is the advantage of using V_c?

10. A carbon dioxide fire extinguisher has a volume of 40 L and is to be charged to a pressure of 20 atm at a storage temperature of 20°C. Determine the mass in kilograms of CO$_2$ at 1 atm.

11. Calculate the pressure of 4 g mol CO$_2$ contained in a 6.25×10^{-3} m3 fire extinguisher at 25°C.

12. You measure that 0.00220 lb mol of a certain gas occupies a volume of 0.95 ft3 at 1 atm and 32°F. If the equation of state for this gas is $pV = nRT(1 + bp)$, where b is a constant, find the volume at 2 atm and 71°F.

13. Calculate the temperature of 2 g mol of a gas using van der Waals' equation with $a = 1.35 \times 10^{-6}$ m6(atm)(g mol$^{-2}$), $b = 0.0322 \times 10^{-3}$ (m3(g mol$^{-1}$)) if the pressure is 100 kPa and the volume is 0.0515 m3.

14. Calculate the pressure of 10 kg mol of ethane in a 4.86 m3 vessel at 300 K using two equations of state: (a) ideal gas and (b) Soave-Redlich-Kwong. Compare with your answer the observed value of 34.0 atm.

15. One pound mole of a mixture containing 0.400 lb mol of N_2 and 0.600 lb mol C_2H_4 at 50°C occupies a volume of 1.44 ft3. What is the pressure in the vessel? Compute your answer by Kay's method.

16. Use the Antoine equation to calculate the vapor pressure of ethanol at 50°C, and compare with the experimental value (Experimental $p^* = 219.9$ mm Hg).

17. What does the term "saturated gas" mean?

18. If a container with a volumetric ratio of air to liquid water of 5 is heated to 60°C and equilibrium is reached, will there still be liquid water present? at 125°C?

19. A mixture of air and benzene contains 10 mole% benzene at 43°C and 105 kPa pressure. At what temperature does the first liquid form? What is the liquid?

20. The dew point of water in atmospheric air is 82°F. What is the mole fraction of water vapor in the air if the barometric pressure is 750 mm Hg?

21. Ten pounds of KClO$_3$ is completely decomposed and the oxygen evolved collected over water at 80°F. The barometer reads 29.7 in. Hg. What weight of saturated oxygen is obtained?

22. If a gas is saturated with water vapor, describe the state of the water vapor and the air if it is:

 (a) Heated at constant pressure.

 (b) Cooled at constant pressure.

 (c) Expanded at constant temperature.

 (d) Compressed at constant temperature.

23. Calculate (a) the pressure at the dew point for the following mixture at 100 °F and (b) the liquid composition.
Component | Mole fraction | K values at psia of
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>190</th>
<th>200</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂H₆</td>
<td>0.218</td>
<td>3.22</td>
<td>3.07</td>
<td>2.92</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>0.665</td>
<td>1.005</td>
<td>0.973</td>
<td>0.92</td>
</tr>
<tr>
<td>i-C₄H₁₀</td>
<td>0.1073</td>
<td>0.45</td>
<td>0.43</td>
<td>0.41</td>
</tr>
<tr>
<td>n-C₄H₁₀</td>
<td>0.0097</td>
<td>0.315</td>
<td>0.305</td>
<td>0.295</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24. Is the critical point a single phase? If not, what phases are present? Repeat for the triple point (for water).

25. A vessel contains air: N₂ (g), O₂ (g), and Ar (g).

(a) How many phases, components, and degrees of freedom are there according to the phase rule?

(b) Repeat for a vessel one-third filled with liquid ethanol and two-thirds filled with N₂ plus ethanol vapor.

Answers:

1. 1883 ft³
2. 2.98 kg
3. 1.32
4. 28.3 m³/hr
5. 0.0493 kg/m³
6. 1.02 (lb CH₄/ft³ at 70 °F and 2 atm)/(lb air/ ft³ at S.C.)
7. N₂, 0.28 psia; CH₄, 10.9 psia; C₂H₆, 2.62 psia
8. (a) 11.12 psia at 2 ft³ and 120°F; (b) 0.28 psia at 2 ft³ and 120°F
9. \(V_{ri} = \frac{RT_c}{P_c} \). It can be used to calculate \(V_{ri} \), which is a parameter on the Nelson and Obert charts.
10. 1.65 kg
11. 14.9 atm
12. V = 0.60 ft³
13. 314 K
14. (a) 50.7 atm; (b) 34.0 atm
15. 262 atm
16. predicted 220.9 mm Hg
17. The partial pressure of the vapor equals the vapor pressure of the gas. Liquid and vapor are in equilibrium.
18. Yes; yes
19. 21°C; benzene
20. 0.0373
21. 4.00 lb
22. (a) Both gas; (b) some liquid water, residual is gas; (c) both gas; (d) some liquid water, residual is gas.

23. 190 psia; \(\text{C}_2\text{H}_6 = 0.0677, \text{C}_3\text{H}_8 = 0.66, i-\text{C}_4\text{H}_{10} = 0.2415, n- \text{C}_4\text{H}_{10} = 0.0308. \)

24. No, gas and liquid in equilibrium. The triple point in the \(p - T \) projection in actually a line on the \(p - V - T \) surface. The pressure and temperature are fixed but the volume is not fixed.

25. (a) \(C = 3, P = 1, F = 4 \); (b) \(C = 2, P = 2, F = 2 \)